Technical Report
CMU/SEI-88-TR-16
ESD-88-TR-17

——
T smeeepama,

= Carnegie-Mellon University
== Software Engineering Institute

N~
N
o
0 wiit L COPY Kernel Facilities Definition
N e, ikl
N Kernel Version 3.0
i
Q Judy Bamberger
‘ Currie Colket
q Robert Firth
Daniel Klein
Roger Van Scoy

‘ ’ December 1989
* o ’ | * DTIC

ELECTE
0CT $ 11900

g ¢ g * B

. DISTRIBUTION

¢ 2-preved for publle nltaq
. Tietmbuwtion Unlimtted

il

Technical Report

CMU/SEI-88-TR-16
ESD-88-TR-17
December 1989

Kernel Facilities Definition

Kernel Version 3.0

Judy Bamberger
Currie Colket
Robert Firth
Daniel Klein
Roger Van Scoy

Distributed Ada Real-Time Kernel Project

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Oiffice
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

\-u.&;)\)\' ’ s

Karl H. Shingler
SEl Joint Program Office

This work is sponsored by the U.S. Department of Cefense.

Copyright © 1989 by Carnegie Melion University.

-«

[
This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Attn: FDRA, Cameron Staticr, Alexandria VA 22304-6145

Copies of this document are also available through the National Technical Information Service. For information on ordering,
please contact NTIS directly: National Technical Information Service, U S. Department of Commerce, Springtield, VA 22161.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents

Preface
I. Kernel Background

1. Rationale
1.1. Ada Runtime Environment
1.2. Applications and Systems Code
1.3. Abstractions and Their Breakdown
1.4. Distributed Applications
1.5. Real-Time Requirements
1.6. Purpose and Intended Audience

2. Definitions
3. Kernel Functional Areas

4. Assumptions, Models, and Restrictions
4.1. Ada Compiler Assumptions
4.2. Process Model
4 3. Initialization Model
4.4. System Model
4.5. Error Model
4.6. Restrictions

Il. Requirements

5. General Requirements
5.1. Behavior
5.2. Performance

6. Processor Requirements e

6.1. Benhavior r‘.,;f;‘-j?;;_;f.——?é

NTIS
6.2. Performance bpirg was 0
[
. I Urennsunced ||
7. Process Requirements Clusuirienilan -
7.1. Behavior T e -
7.2. Performance PR <
p Ly ooattons
8. Semaphore Requirements | /7 "ion1lity Codes
3.1. Behavior o i) amdfer
St tul

8.2. Performance RO

0O ~N~NOOOOODOLO W =

-
-

e L™ G S G W §
NOOLHE AW WW

Py
w

NI
N —

NNN
S WW

NDNDN
~N o,

W NN
< ©

CMU/SEI-88-TR-16 (Revised)

9. Scheduling Requirements
9.1. Behavior
9.2. Performance

10. Communication Requirements
10.1. Behavior
10.2. Performance

11. Interrupt Requirements
11.1. Behavior
11.2. Performance

12. Time Requirements
12.1. Behavior
12.2. Performance

13. Alarm Requirements
13.1. Behavior
13.2. Performance

14. Tool Interface
14.1. Behavior
14.2. Performance

IN. Kernel Primitives

15. Processor Management

15.1. Primitives
15.1.1. Initialize Master processor
15.1.2. Initialize subordinate processor
15.1.3. Start subordinate processors
15.1.4. Create network configuration

15.2. Blocking Primitives

15.3. Status Codes ,

16. Process Management
16.1. Primitives

16.1.1. Declare process
16.1.2. Create process
16.1.3. Initialization complete
16.1.4. Allocate device
16.1.5. Die
16.1.6. Kill
16.1.7. Who am |
16.1.8. Name of

33
33
36

37
37
41

43
43
46

47
47
49

51
51
53

55
55
57

59

63
64
64
67
67
67
67
68

69

69
69
69
71
71
72
72
72
72

CMU/SEI-86-TR-16 (Revised)

16.2. Blocking Primitives
16.3. Status Codes

17. Semaphore Management
17.1. Primitives
17.1.1. Declare semaphore
17.1.2. Claim semaphore
17.1.3. Release semaphore
17.2. Blocking Primitives
17.3. Status Codes

18. Schedule Management

18.1. Primitives
18.1.1. Set process preemption
18.1.2. Get process preemption
18.1.3. Set process priority
18.1.4. Get process priority
18.1.5. Wait
18.1.6. Set timeslice
18.1.7. Enable timeslicing
18.1.8. Disable timeslicing

18.2. Blocking Primitives

18.3. Status Codes

19. Communication Management
19.1. Primitives
19.1.1. Send message
19.1.2. Send message and wait
19.1.3. Receive message
19.2. Blocking Primitives
19.3. Status Codes

20. Interrupt Management
20.1. Primitives
20.1.1. Enable
20.1.2. Disable
20.1.3. Enabled
20.1.4. Simulate interrupt
20.1.5. Bind interrupt handler
20.2. Blocking Primitives
20.3. Status Codes

73
73

75
75
75
75
76
76
76

77
79
79
80
80
80
80
81
81
81
81
81

83
83
83
84
85
85
86

87
87
87
88
88
88
89
89
89

CMU/SEI-88-TR-16 (Revised)

21. Time Management

21.1. Primitives
21.1.1. Package calendar
21.1.2. Time constants
21.1.3. Adjust elapsed time
21.1.4. Adjust epoch time
21.1.5. Read clock
21.1.6. Synchronize

21.2. Blocking Primitives

21.3. Status Codes

22. Alarm Management

22.1. Primitives
22.1.1. Set alarm
22.1.2. Cancel alarm

22 .2. Blocking Primitives
22.3. Errors

23. Tool Interface

23.1. Primitives
23.1.1. Process information
23.1.2. Interrupt information
23.1.3. Begin collection
23.1.4. Cease collection
23.1.5. Read process table
23.1.6. Read interrupt table
23.1.7. Size of process table

23.2. Blocking Primitives

23.3. Status Codes

Appendix A. Glossary

Appendix B. Mapping from Kernel Primitives to Requirements
Appendix C. Mapping from Requirements to Kernel Primitives
Appendix D. Requirement Resuits

References

91
93
93
93
93
93
a3
94
94
94

95
95
95
95
96
96

97
98
98
99
99
99
99
100
100
100
100

101
105
107
109
113

iv CMU/SEI-88-TR-16 (Revised)

List of Figures

Figure 4-1:

Figure 14-1:
“Figure 15-1:
Figure 15-2:
Figure 16-1:
Figure 18-1:
Figure 19-1:
Figure 20-1:

System View
ISO Model to Kernel Mapping
Sample Network Configuration Table (NCT)
Network Initialization Protocol (Part 1 of 2)
Process Execution Environment
Process States
Datagram Network Model
Interrupt Handler Execution Environment

15
60
63
65
70
79
84
90

CMU/SEI-88-TR-16 (Revised)

Preface

Purpose of This Document

This document defines the functionality of the Distributed Ada Real-Time Kemel (hereafter
called the Kemel). The Kemel is being developed as one artifact of the Distributed Ada
Real-Time Kemel Project (hereafter called the project). The goal of the Kemel is to support
effectively the execution of distributed Ada applications in an embedded computer
environment. As discussed in [Firth 87], the Kemel provides users with support for /anguage
functionality (i.e., the ability to execute Ada programs in a distributed, real-time
environment); it does not provide support for language features (i.e., Ada tasking primitives).
As a result, the Kemel specification places certain requirements (restrictions and
conventions) on the Ada application programs that use the Kemel. These will become
apparent to the reader as the definition of the Kernel is expounded.

Structure of This Document
This document is divided into three major parts:
1. Kemel Background: describes the models on which the Kemnel is based and
outlines the scope of its capabilities)‘

2. Requirements: describes the functionality and performance required of the
Kemel. /-

3. KemelJ Primitives: describes the mechanisms and primitive capabilities the
Kernel provides to implement the requirements.

CMU/SE!-88-TR-16 (Revised) 1

CMU/SE!-88-TR-16 (Revised)

Kernel Facilities Definition

ABSTRACT: This document defines the conceptual design of the Kemel by
specifying the underlying models, assumptions, and restrictions that govern the
design and implementation of the Kernel and the behavioral and performance
requirements to which the Kernel is built. This document is the requirements and
top-level design document for the Kernel.

I. Kernel Background

This part of the Kernel definition provides the needed background material to understand the
remainder of the document. In particular, it provides:

» The rationale for the Kernel and the goals to be achieved by it (Chapter 1).
¢ The definitions used in the document (Chapter 2).

* An overview of the Kernel's functionality (Chapter 3).

* A complete discussion of the assumptions, models, and restrictions on which
the Kemel requirements and primitives are based (Chapter 4).

CMU/SEI-88-TR-16 (Revised)

CMU/SEI-88-TR-16 (Revised)

1. Rationale

Ada is now being mandated for a large number of DoD development projects as the sole
programming language to be used for developing software. Many of these projects are
trying to build distributed real-time systems. Many project managers and contractors are
anxious to support this effort, to reap the advantages of Ada, and to use the newer
techniques of software engineering that Ada can support. This transition, however, has not
always been smooth; some serious problems have been encountered. This paper
discusses several of these problems and describes a prototype software artifact built to
address these concerns and to support execution of real-time Ada applications in a
distributed, embedded environment. This prototype is not intended to solve all the problems
of real-time, embedded systems, but it does provide one viable, near-term option
demonstrating that Ada can be used in real-time systems today.

1.1. Ada Runtime Environment

One of the most persistent and worrying problems is the suitability of the Ada runtime
system, most notably the tasking features, and especially on distributed systems. There are
issues concerning functionality (amply documented in [artewg-survey 86]), customization,
tool support (especially target debuggers and performance monitors), issues of
inter-process communication and code distribution, and, perhaps most intractable, issues of
execution-time efficiency.

One way of approaching this problem is to press for better, "more mature” Ada
implementations: more optimization; user-tailorable runtime systems (as in [artewg-model
86]); special-purpose hardware. This is a valid route, but one that will take time, money, and
experience, and many of the solutions will be compiler dependent, machine dependent, or
application dependent. Many developers are still unsure even how to use the new language
features of Ada, and at least one cycle of application use, performance measurement, and
inethodology review will be needed before users can be sure which parts of the Ada
language and runtime are indeed critical.

The Kemel described by this document implements another route to a possible solution
(defined at length in [KFD 89}) which is being pursued at the Software Engineering Institute
(SEl). It should be a quicker and cheaper route, and hence a feasible short-term altemative.

1.2. Applications and Systems Code

In conventional programming, application code (which is what has to be written to meet the
user requirements) is distinguished from system code (which is obtained with the target
machine and which is intended to support applications generally). With Ada and embedded
systems, these distinctions are not so clear cut. First, it has been traditional, when
developing real-time systems in other programming languages, for the application

CMU/SEI-88-TR-16 (Revised) , 5

programmer to write specific code down to a far lower level, including special device drivers,
special message or signaling systems, and even a custom executive. There is far less
general-purpose system code. Secondly, the Ada language complicates the distinction
between application and system code. In older languages, aimost all system functions were
invoked through a simple and well-understood interface — the system call — expressed as
a normal subroutine call. In Ada, however, many traditionally system-ievel functions are
explicit in the language itself or implied by language constructs; for example, tasking, task
communication, interrupt acquisition, and error handling. In fact, the work is really done by
the old familiar system code, now disguised as the Ada runtime.

1.3. Abstractions and Their Breakdown

If the user is satisfied with the Ada level of abstraction — with its view of what tasks are,
what time is, and so on — then the Ada view is a simplification: the application code in fact
performs system calls, but the compiler inserts them automatically as part of the
implementation of language constructs.

Unfortunately, many users are dissatisfied with the Ada abstraction, and seek either finer
control or access to lower-level concepts, such as semaphores, send/wait or
suspend/resume primitives, and bounded delays. Under the above circumstances, the extra
language features, and the hidden system calls they generate, are an active hindrance to
the application programmer, and an obstruction to the work of implementation.

For example, the programmer may need a strong delay primitive — one that guarantees
resumption as soon as possible after the expiration of the delay. However, Ada already has
a "delay” statement, but with different semantics. When implementing a different delay
primitive, the user risks damaging the Ada runtime behavior, since Ada assumes it has sole
control of the Ada tasks and does not expect an extra routine to perform suspensions and
resumptions. To implement the new delay robustly, the user has to interface with the
intemals of the Ada runtime, which may be very hard to do and will surely be hard to
maintain. Moreover, the Ada delay statement composes naturally into timed entry calls and
timed select statements. If the user wishes to do these things with the new delay statement,
a substantial part of the Ada semantics must be rebuilt, and a substantial part of the runtime
must be modified.

All this, of course, is a distraction from the real work — the work of impiementing the
application. One of the main motivators of the Kerel is the observation that many
contractors using Ada are spending most of their time worrying about the Ada system level
and far too littie tim9 solving the application problems, some of which are not easy.

i sum, it can be harder to build applications using Ada language features than it would be
to implement the required functionality without them. But it is also undesirable for every
application to reinvent specific incarmnations of real-time functional abstractions.

6 CMU/SEI-88-TR-16 (Revised)

1.4. Distributed Applications

A further and equally difficult problem is the issue of executing appiications on a distributed
target configuration. Good software development methods teach decomposition of large
applications into functional units communicating through well-defined interfaces. The
physical allocation of such units to individual processors in the target environment can be
done in many ways, without impairing their functionality. Good design therefore requires
that the specification of these functional units and their interfaces be independent, as far as
possible, of their physical distribution.

In a real-time system, this implies that the mechanisms by which units interact — to
synchronize, communicate with, schedule, or alert one another — should be uniform,
regardless of whether the units are sited on the same processor or at some distance across
a distributed network. If the implementation language is Ada, this leads to a requirement for
distributed Ada.

Unfortunately, nearly all current commercially-available Ada implementations do not support
this requirement. They implement the real-time mechanisms of the language only on
individual or isolated processors, and provide no help with communication between
processors, and hence between units on different machines. This situation leads to systems
where Ada tasks communicate by different mechanisms, with different style, semantics and
implementations, merely because the Ada tasks are local in one case and remote in the
other. Overall, there is a substantial loss of application clarity, maintainability,
reconfigurability, and conceptual economy.

1.5. Real-Time Requirements

This brings us to the crux of the Kernel's rationale. Users — people who have to write
application code — do not want language features: they want language functionality. In
Ada, much of the real-time functionality is captured in the form of special features. This may
well be the correct solution in the long term ([Firth 87]), since by making real-time
operations explicit in the language, the compiler is permitted to apply its intelligence to their
optimization and verification. But in the short term, it is palpably not working: the users
either cannot use, or do not know how to use, the given features to achieve the required
functionality; the implementors of the language do not know how to satisfy the variety of
needs of real-time applications; the vendors are unable to customize extensively validated
implementations; and commercial support for distributed targets is rare, even as the need
for such support is becoming endemic among application developers.

Accordingly, it is opportune to revert to the former method of providing functionality: by
specific system software implemented as a set of library routines and invoked explicitly by
the user. The Kernel has taken this approach.

CMU/SEI-88-TR-16 (Revised) 7

1.6. Purpose and Intended Audience

The main purpose of the Distributed Ada Real-Time Kernel (DARK) Project is to
demonstrate that it is possible to develop application code entirely in Ada that will have
acceptable quality and real-time performance. This purpose is achieved by providing a
prototype artifact — a Kemel — that implements the necessary functionality required by
real-time applications, but in a manner that avoids or mitigates the efficiency and maturity
problems found in current Ada runtime implementations.

This prototype embodies a tool-kit approach to real-time systems, one that allows the user
to build the real-time abstractions required by the application. This prototype is not intended
to solve all the problems of embedded, real-time systems, nor is it the only solution to these
problems. However, it is intended to be a solution where efficiency and speed are the
primary motivation and, where warranted, functionality has sometimes been limited
accordingly.

Given this, the purpose of such a prototype is:

1. To encourage people to use Ada for application code by mitigating many of
their problems.

2. To allow developers to concentrate on the application-specific areas of their
problem by providing them with a set of working system primitives that are
more familiar, that can be invoked in a more customary way, and that can be
extended.

3. To offer a usable support base, of known functionality and quality, for real-time
Ada applications.

The Kemel! provides one solution to the problem of using Ada in distributed, real-time,
embedded applications — one that can readily be accomplished in the near term. The
Kemel is truly "in the spirit of Ada" — that is, it uses the Ada language features (e.g.,
packages, subprograms) to provide the needed adjunct capabilities. This alternative returns
explicit control of scheduling to the application implementor (as described in [Workshop 88])
and provides a uniform communication mechanism for supporting distributed systems.

8 CMU/SEI-88-TR-16 (Revised)

2. Definitions

Two definitions are key to understanding the Kemel's models:

e Ada task: An Ada language construct that represents an object of concurrent
execution managed by the Ada runtime environment (RTE) supplied as part of
a compiler (under the rules specified in the Ada Language Reference Manual,
see [ALRM 83)).

e Kernel process: An object of concurrent execution managed by the Kemel
outside the knowledge and control of the Ada RTE.

The Kemel's terminology is deliberately different from that of Ada. This is for two reasons:

1. To remind the application developer to think not in Ada terms, but rather in the
terms used by the Kemel.

2. To avoid the implication that the Kemel implements any specific function in a
way that resembles an existing Ada feature with that function.

This document will focus specifically on Kernel processes, not on Ada tasks. In fact, except
for “academic interest” or comparison purposes, the term “Ada task” does not appear in this
document.

CMU/SEI-88-TR-16 (Revised) 9

10

CMU/SE!-88-TR-16 (Revised)

3. Kernel Functional Areas

This chapter briefly summarizes the areas that the Kernel does and does not address based
on [artewg-interface 86]. First, the Kemel does not address the following areas:

» Multi-level security: This is beyond the scope of this project.

 Rollback/checkpoint recovery: The Kemel is not dealing with the issues of fault
tolerance; however, it does address fault detection and reporting.

e Memory/storage management and garbage collection: In general, the Kemel
expects all processes on one processor to execute in the same uniform
address space, freely sharing global data. Also, the Kernel does not manage
memory for access collections.

¢ Pre-elaboration: Since the Kemel is not dealing with Ada tasking (and
concomittant semantics), this is not needed.

e Fast-interrupt pragma: The Kemel is excluding this pragma because it is
specific to Ada task entries and to some compilers. The Kernel provides
equivalent functionality via Kernel primitives.

The Kemel does address the following areas:

e Processor management

e Process management

e Semaphore management

e Schedule management

e Communication management
e Interrupt management

e Time management

o Alarm managernent

e Tool interface

These items are discussed in more detail in subsequent chapters in this document.

CMU/SEI-88-TR-16 (Revised) 1"

12

CMU/SE|-88-TR-16 (Revised)

4. Assumptions, Models, and Restrictions

Chapter 3 defined broad, general categories of functionality. To refine these, this chapter
presents a set of models, assumptions, and restrictions on which the Kernel is based.

4.1. Ada Compiler Assumptions

Regarding the Ada compiler and its relationship to the Kernel:

1. No additional pragmata are implemented or existing pragmata modified.

2. The Kernel has been developed using an Ada compiler that allows the Ada
tasking RTE to be excluded from the executable image.

3. The compiler-supplied Ada runtime must be re-entrant.

4. The Ada compiler and RTE have not been be modified; no changes have
been made that would invalidate the compiler.

5. The Kernel has total control over the system clock.

The selection of a compiler was driven by the above needs and by the needs of the model
application used to test the Kernel. It was not driven by any needs of the Kemel itself.
Given that no modifications have been made to the FTE, it continues to provide all services
needed by the application except those related to concurrency.

4.2. Process Model

The Kernel presents to the application the abstraction of a process (as defined in Chapter
2), that is, a concurrent thread of execution. A Kernel process is a unit of code that executes
in parallel with other units of code. It can communicate with other processes, can arrange to
be executed at certain times, and is otherwise under the control of the Kerel's Scheduler.

In Ada terms, a process is a procedure with no parameters. The process begins execution
at the start of its declarative region and ceases execution if it reaches the end of its
statement sequence. This means that a process that is intended to run forever must be
coded with an explicit loop statement.

A Kernel process may:

» Declare local variables

¢ Call Ada subprograms

¢ Call Kernel primitives

» Reference objects declared in packages that are Ada compilation units
o Call the Ada allocator

A Kernel process must not.

» Reference objects declared within other Ada subprograms (the Kemel's
process encapsulation cannot set up the correct access paths to such objects).

CMU/SEI-88-TR-16 (Revised) 13

« Be anything other than an outer-level procedure.
» Use the Ada tasking features ([ALRM 83), Chapter 9).

4.3. Initialization Model

The application image begins execution in the Main Unit (after Kernel initialization). The
Main Unit is an application-supplied Ada procedure that is responsible for configuring the
processor to meet the requirements of the application. This configuration must include:

1. Participating in the network initialization protocol.
2. Declaring all remote communication partners.
3. Declaring and creating all locally executing processes.

There are several optional activities that may be performed by the Main Unit, including:

1. Allocating non-Kermel devices to processes.

2. Reading time-of-day clock (which is required for the Main Unit of the Master
Processor).

3. Reporting system initialization failures to the external world.

4. Binding interrupt handlers.

5. Declaring processor-specific semaphores.

6. Performing any system-dependent initializations (devices, buses, etc.).

In general, the Main Unit is the user-supplied entity that is responsible for configuring a
processor in the manner needed by the application. After initializing the processor, the Main
Unit is descheduled while the processes continue to run independently.

4.4. System Model

in light of the process model discussed previously, consideration must be given to the
environment in which these collections of processes are executed. This requires stepping
back from the "process-in-the-small® issues and considering some system-level, or
"process-in-the-large,” issues. The system model on which the Kemel is based is shown in
Figure 4-1. This view illustrates all the Kernel assumes about the target system:

» Three types of hardware objects in the network:

1. Kemnel processors
2. Non-Kernel processors or devices (attached to the system bus)
3. Devices that may interrupt a processor

e No shared memory assumed (or excluded).
* No mass storage devices assumed (or excluded).
» Kernel alone interfaces directly to the system bus.

14 CMU/SEI-88-TR-16 (Revised)

Y SN NSNS
\ Device \ Device Device
SSNS NSNS
ain Main Main
Unit Unit Unit
a a b Vivian C C .C pC o€
Py Merlin pg P, P, IJ; ia Py P, Py Py P
KERNEL KERNEL KERNEL

Processor b Processor ¢

Processor a

Interfaceq System Bus
Device
Device§
Processor d \\l 5 Processor m
KERNEL KERNEL
i Main
Mg:tn Unit
d ... d m m
|:’1 Ps P1 Lancelot P3

Key
p? Process #i running on processor q.
Main Unit: The Ada Main Unit running on the processor.

Meriin, Vivian, and Lancelot are named for use in
examples.

Figure 4-1: System View

CMU/SEI-88-TR-16 (Revised) 15

Given this model, the Kernel considers that:

The application comprises n Kernel processes formed into m Ada programs (load
images) running on m processors.

This requires that:

¢ The user has a mechanism that allows for the static distribution of the mimages
over the m processors in the configuration.

e The application developer has a mechanism to download the images into
processor memory.

e The application developer has a mechanism to commence execution of the
loaded programs.

e The application developer has tools to manipulate all needed disk/tape/bulk
memory accesses (if these are available in the embedded configuration).

4.5. Error Model

All Kemel requests are of the form P {S} Q; where P is the pre-condition to statement S, and
Q is the post-condition of statement S. Errors occur when one of the following conditions
exists:

¢ Pre-condition (P) is false on call, i.e., there is an error on Kernel invocation
("nvalid request”).

e Pre-condition (P) is asynchronously invalidated before call terminates, i.e., an
asynchronous problem arises ("Sorry, while you were waiting, something awful
happened”). _

¢ The post-condition (Q) cannot be established, i.e., there is a failure of the virtual
machine ("Request valid, but we can't do it today”).

All Kemel errors are be signaled by a status code in all Kernel operations that may fail.

All Kernel primitives are invoked synchronously, but their retum (or resumption) may be
asynchronous (i.e., invoking a Kemel primitive may cause the scheduler to suspend the
invoking process and resume a different process). From the point of view of the process,
the entire operation appears to happen synchronously. That is, the primitives return to the
caller after they have completed their operation (returning a success code) or after they
have abandoned it (returning a failure code). Howevaer, their blocking behavior depends on
the nature of the errors that might occur.

An error of the first. kind, where a precondition is false on call, always results in an
immediate return, without blocking. An error of the second kind, where a precondition is
invalidated before completion, causes a return after some interval of time, during which the
caller is blocked. An error of the third kind might be detectable on call or might be detected
only after some time, and so the caller might or might not have been blocked.

Wherever possible, errors are detected locally, by the Kernel on the processor running the
invoking process. To do this error detection, the Kemel relies on its local copy of information

16 CMU/SEI-88-TR-16 (Revised)

a

representing global or remote state. A rule of this implementation is that a local copy might
lag, but cannot lead, the true remote state it represents. For example, if a local process table
indicates that a remote process is dead, that process has indeed died. Many of the status
codes noted in this document are diagnostic in nature and thus appropriate only for software
test and integration.

Given that the Kernel is intended for use in operational real-time systems, there is a means
provided to disable runtime error reporting. The Kernel is configured so that each error code
may be separately enabled or disabled. If an error code is enabled, the Kernel invariably
checks for and reports that error. If an error code is disabled, the Kernel never reports that
error, even if it occurs In addition, the Kemel is free to omit any checking whose sole
purpose is to avoid damage to a process attempting an erroneous action.

However, the Kemel never omits checks that guard against damage to internal data
structures or to processes other than the one performing an erroneous action, regardiess of
whether the error code is enabled or disabled.

4.6. Restrictions

Finally, a number of restrictions are imposed on the form of the application code. The
following restrictions are offered, with justification in italics:

1. Initialization is not a time-critical function. This is considered to be a
simplification and one-time operation done at system start-up.

2. The Kernel does not implement the Ada tasking semantics. This is in keeping
with the Kernel's design goal of making explicit control that is now implicit.

3. No Ada tasking primitives may be used by the application. This preserves the
goal to replace the implicit operations of Ada tasking with explicit operations of
Kernel processes. A second reason is to avoid having two runtime systems in
the processor competing for control of the hardware clock.

4. All Kemel processes are created statically and scheduled dynamically. This is
simply a restriction imposed to make the development effort of the Kernel a
manageable activity.

5. The Kemel does not implement fault tolerance, but it does detect and report
the presence of certain (to be defined) classes of faults. The Kernel detects
certain system fauits, but it leaves the recovery froi.1 these faults in the hands
of the application. The Kernel provides the capability to perform fault
tolerance.

6. The Kerriel does not use shared memory between nodes. The Kernel's
reliance on special hardware, such as shared memory, would restrict the
portability of the Kernel and as such is disallowed.

7. Any Kernel process may communicate with any other Kemel process. Again,
this restriction simplifies the Kernel by placing the burden of restricting
communications on the system or software engineer. Management of system
process names thus becomes a configuration management issue within the
application.

CMU/SEI-88-TR-16 (Revised) : 17

8.

10.

Inter-process communications are provided by explicit use of remel
primitives. Again, this is a manifestation of the explicit operation versus the
implicit operation.

. Each processor has its memory completely loaded at downioad time. This is

another simplifying assumption for the Kernel implementation. The Kernel
operates under the restriction that all processes and all data are memory
resident at all times. This does not prohibit the application from building
processes that can be rolled in and out of memory.

The Kemel does not implement any paging or memory management facilities.
The Kernel assumes all processes on one processor execute in the same
unchanging address space.

18

CMU/SEI-88-TR-16 (Revised)

ll. Requirements

This part of the Kernel Facilities Definition defines the requirements to be implemented by
the Kermel. The chapters in this part are parallel to those in the Kernel primitives part, which
follows. Each chapter in this part is divided into two sections:

e Bahavior: Dictates the functional behavior of the Kernel.

e Performance: Dictates the performance requirements of the Kernel. All
performance requirements are based on a Motorola 68020 with a 20 Mhz clock
(one wait state). This is approximately 50 machine instructions for every 12.5
us (assuming 5 cycles/machine instruction and 20 ns/cycle).

Section numbers associated with requirements in this part are the requirement numbers
referenced throughout the remainder of the document.

CMU/SEI-88-TR-16 (Revised) 19

20

CMU/SEI-88-TR-16 (Revised)

5. General Requirements

The requirements in this chapter apply to the specification, design, and implementation of
the entire Kemnel.

5.1. Behavior

5.1.1. General failure reporting

The Kernel shall return status codes to the application program as a resuit of an invocation
of a Kernel primitive.

5.1.2. Kernel priority
Kernel primitives shall exectte at the priority of the invoking process.

5.1.3. Low-level hardware details isolated from application

The Kernel shall encapsulate control and use of the system bus (i.e., the low-level
communication medium).

5.1.4. System dependencies isolated

System dependencies of the Kernel shall be isolated and encapsulated within the Kemel
code.

5.1.5. Kernel provably correct
The Kernel code shall be provably correct (except for termination).

5.1.6. Kernel tailoring

The Kemel shall be tailorable (via compilation) to meet the local system configuration and
needs at the following levels:

1. Priority range

2. Maximum message size

3. Maximum number of process table entries

4. Maximum size of the Network Configuration Table (NCT)
5. Default timeslice quantum ‘

6. Default message queue size

5.1.7. Kernel modularity

The Kernel shall be developed such that an application program has to import only those
Kernel primitive capabilities that it needs.

CMU/SEI-88-TR-16 (Revised) 21

5.1.8. Run-time error checking
The Kernel shall provide the capability to disable all error checking and reporting.

5.2. Performance

5.2.1. Kernel size
The Kemel shall use no more than 5% of the total available system memory for Kemel code.

5.2.2. Kernel internal data size
The Kemel shall use no more than 5% of the total available system memory for Kernel data.

5.2.3. Kernel stack for Kernel invocation
The Kemel shall use no more than 100 bytes of process stack space for a Kernel primitive
invocation.

5.2.4. Linear performance
The time performance of all Kernel algorithms shall be better than linear in the number of
processes.

5.2.5. Kernel algorithm documentation
All Kernel algorithms shall be fully documented in the Kernel Architecture Manual [KAM
89].

22 CMU/SEI-88-TR-16 (Revised)

6. Processor Requirements

6.1. Behavior

6.1.1. Master processor identification

The Kernel shall provide the capability for exactly one processor to identify itself as the
network Master processor for initialization purposes.

6.1.2. Subordinate processor identification
The Kernel shall provide the capability for all other Kermel processors to identify themselves
as subordinate to the network Master processor for initialization purposes.

6.1.3. Processor failure detection
The Kernel shall detect the failure to initialize any Kemel processor in the network.

6.1.4. Processor failure reporting
The Kemel shall report to the Master processor the failure to initialize any Kemel processor
in the network that is required for initialization.

6.1.5. Network clock synchronization at initialization

The Kemnel shall provide the capability to synchronize at system initialization the clocks on
all Kernel processors.

6.1.6. Clock synchronization not enforced after initialization
The Kemel shall not enforce clock synchronization after initial synchronization.

6.1.7. Network failure not detected
The Kemel shall not be required to detect network failure.

6.1.8. Network integrity not provided
The Kernel shall not provide network integrity controls.

6.1.9. Network integrity primitives provided

The Kernel shall provide the capability for the user to implement network integrity consistent
with the needs of the application.

‘CMU/SE!-88-TR-16 (Revised) 23

6.1.10. Network configuration primitives provided
The Kernel shall provide the capability for the application to specify the network
configuration including:

1. Logical name

2. Physical address

3. Processor device

4. Other data required for network operation

6.1.11. Low-level network details isolated from application

The Kernel shall isolate low-level network implementation knowledge from the user
application.

6.2. Performance

6.2.1. System initialization not time-critical
System initialization shall be accomplished in less than 5 seconds.

6.2.2. Initial time delta across the network
Immediately after system time initialization, all clocks shall be within TBD TICKs of one
another.

24 CMU/SE!-88-TR-16 (Revised)

7. Process Requirements

7.1. Behavior

7.1.1. Main Unit identification
There shall be a single Main Unit on each processor that coordinates processor-level
initialization.

7.1.2. Main Unit profile
The Main Unit shall be an Ada procedure.

7.1.3. Identification of communication partners

The Kemel shall provide the capability for the Main Unit to identify all Kernel processes and
non-Kemel devices with which communication from this processor is to occur.

7.1.4. Create process

The Kemel shall provide the capability for the Main Unit to create mdependent concurrent
threads of control (i.e., processes). :

7.1.5. Ada process profile
The code of a process shall be an Ada procedure with no parameters.

7.1.6. Process stack size

The Kermnel shall provide the capability for the Main Unit to specify the process stack size for
each created process.

7.1.7. Process stack size fixed
The process stack size shall be fixed at process-creation time.

7.1.8. Default process stack size
The default process stack size shall be 64 bytes.

7.1.9. Message queue size

The Kernel shall provide the capability for the Main Unit to specify the incoming message
queue size for each created process.

CMU/SEI-88-TR-16 (Revised) 25

7.1.10. Message queue size fixed
The process message queue size shall be fixed at process-creation time.

7.1.11. Default message queue size
Deleted - 24 March 1989.!

7.1.12. Non-propagation of exceptions
The Kemel shall ensure that exceptions are not propagated outside the scope of the
process in which they are raised.

7.1.13. Termination on illegal exception propagation
The Kernel shall terminate any process that attempts to propagate an exception outside the
scope of the process.

7.1.14. Allocate device

The Kernel shall provide the capability for a Kernel process to identify itself as the sole
receiver of messages sent from a non-Kermel device.

7.1.15. Successful initialization

The Kemel shall provide the capability for the Main Unit to inform the other Kernel
processors of the successtul initialization of its processor.

7.1.16. Ensure network-wide initialization completed

The Kemel shall ensure that no Kemel process executes until all necessary network-wide
initializations under the control of the Kernel are complete.

7.1.17. Main Unit termination
Upon successful completion of processor initialization, the Main Unit shall be terminated.

7.1.18. Process self-termination
The Kernel shall provide the capability for a process to terminate itself in an orderly manner.

7.1.19. Process self-abortion
Deleted - 24 March 1989.2

'Message queue size is defined as the maximum number of pending messages; thus, no meaningful default
oxists.

2Subsumed by requirement 7.1.18.

26 CMU/SEI-88-TR-16 (Revised)

7.1.20. Terminating another process
The Kernel shall provide the capability for one process to terminate another process in an
orderly manner.

7.1.21. Pending messages for terminated process discarded
The Kemel shall ensure that messages pending for a terminated process are discarded.

7.1.22. Pending messages for aborted process discarded
Deleted - 24 March 1989.3

7.1.23. Identify self
The Kernel shall provide the capability for a process to obtain its own identity.

7.1.24. Identify another process
The Kernel shall provide the capability for a process to obtain the logical name of another

Kemel process or non-Kernel device in the network.

7.1.25. Process failure detection
The Kemel shall provide the capability to detect the failure of any process in the network.

7.1.26. Process failure reporting
The Kernel shall report the detected failure of any process in the networx.

7.1.27. Single message queue
The Kernel shall provide a single incoming message queue for each created process.
7.2. Performance

7.2.1. Time to create process
The creation of a process shall take no more than 60 ps.

7.2.2. Time to terminate process
The termination of a process shall take no more than 30 ps.

3Subsumed by requirement 7.1.21.

CMU/SE!-88-TR-16 (Revised) 27

7.2.3. Time to abort process
Deleted - 24 March 1989.4

7.2.4. Time to allocate device
The allocation of a device to a process shall take no more than 20 ps.

7.2.5. Kernel data for each active process
The Kernel shall use no more than 100 bytes of data for Kernel data structures for each
active process.

7.2.6. Kernel stack for each active process
The Kemnel shall use no more than 64 bytes of process stack space for each process.

4Subsumed by requirement 7.2.2.

28 CMU/SEI-88-TR-16 (Revised)

8. Semaphore Requirements

8.1. Behavior

8.1.1. Create a semaphore
The Kernel shall provide the capability to create a semaphore object.

8.1.2. Creation semantics
The creation of a semaphore shall associate an empty waiting process queue with the
semaphore object.

8.1.3. Semaphore queue FIFO
The waiting process queue shali be first in, first out (FIFO) ordered.

8.1.4. Claiming a semaphore
The Kemel shall provide the capability for a process to obtain access to a previously created
semaphore.

8.1.5. Claim timeout after duration
The Kernel shall provide the capability for a claim operation to terminate after a specified
duration if the semaphore does not become available.

8.1.6. Claim timeout at specific time

The Kernel shall provide the capability for a claim operation to terminate at a specific
absolute time if the semaphore does not become available.

8.1.7. Resumption priority after claim

The Kemnel shall provide the capability for the claiming process to specify a priority at which
it is to be unblocked.

8.1.8. Claiming an available semaphore

Claiming an available semaphore shall immediately give control of the semaphore to the
invoking process and shall mark the semaphore as unavailable.

8.1.9. Claiming an unavailable semaphore
Claiming an unavailable semaphore shall immediately block the invoking process until the
semaphore becomes available or the timeout expires.

CMU/SEI-88-TR-16 (Revised) : 29

8.1.10. Releasing a semaphore
The Kernel shall provide the capability for a process to relinquish control of a semaphore it
currently has claimed.

8.1.11. Release semantics
Releasing a semaphore shall allow the Kernel to give control of the semaphore to the
process at the head of the waiting process queue, if any.

8.1.12. FIFO exceptions
The Kemnel shall allow the following exceptions to the FIFO rule for semaphore queuses:

1. When a process times out on a claim, it is removed from the semaphore
queue.

2. When a process is killed, it is removed from the semaphore queue.

8.1.13. Release with no waiting process
Releasing a semaphore shall allow the Kernel to mark that semaphore as free if there is no
process waiting for that semaphore.

8.1.14. Created semaphore is free
When a semaphore is created, it shall be marked as free (i.e., available).

8.1.15. Release in any order
The Kernel shall allow a process tu release claimed semaphores in any order.

8.1.16. Claim with zero-length timeout

Claiming a semaphore with a zero-length timeout® shall immediately: claim the specified
semaphore or terminate the claim operation.

8.2. Performance

8.2.1. Time to create a semaphore
Creating a semaphore object shall take no more than 25 ps.

A zero-length timeout is a duration of zero or less, an absolute time of now or in the past, or any time
reference shorter than that required for the Kernel to perform a context switch.

30 CMU/SE|-88-TR-16 (Revised)

8.2.2. Time to claim a semaphore
Claiming a semaphore object shall take no more than 25 ps.8

8.2.3. Time to release a semaphore
Releasing a semaphore object shall take no more than 25 ps.”

8No scheduling activity is involved.

"No scheduling activity is involved.

CMU/SE|I-88-TR-16 (Revised)

31

32

CMU/SEI-88-TR-16 (Revised)

9. Scheduling Requirements

9.1. Behavior

9.1.1. Initial scheduling parameters

The Kemel shall provide the capability for each Main Unit to specify the initial scheduling
parameters of each process to execute on that processor:

9.1.2. Defauit schedule parameters
The default schedule parameters of a process shall be: preemptable and lowest possible
priority.

9.1.3. Representation of priority
Process priorities shall be represented as a subset of the positive integers.

9.1.4. Definition of priority range
The range of priorities shall be defined at compile time by the user(s) of the Kernel.

9.1.5. Definition of priority ordering
Smaller integer values for priority shali represent higher process priorities.

9.1.6. Dynamic process priority
The Kernel shall provide the capability to set process priorities dynamically.

9.1.7. Set initial priority

The Kemel shall provide the capability to set the initial process priority at process-creation
time. -

9.1.8. Change priority

The Kernel shall provide the capability for a process to change its own process priority.

9.1.9. Query priority

The Kernel shall provide the capability for a process to query its own process priority.

9.1.10. Definition of preemption

The Kernel shall provide two preemption states: preemptable by a process of the same
priority, and not preemptable by a process of the same priority.

CMU/SEI-88-TR-16 (Revised) 33

9.1.11. Set initial preemption
The Kernel shall provide the capability to set the initial preemption state at process-creation
time.

9.1.12. Change preemption
The Kemel shall provide the capability for a process to set its own preemption state.

9.1.13. Query preemption
The Kernel shall provide the capability for a process to query its own preemption state.

9.1.14. Definition of wait

The Kernel shall provide the capability for a process to voluntarily relinquish control of the
processor and to be resumed at the next sequential statement.

9.1.15. Wait for duration
The Kemel shall provide the capability for a process to block its own execution for a
specified duration.

9.1.16. Wait until specified time
The Kernel shall provide the capability for a process to block its own execution until a
specified time.

9.1.17. Resumption priority after wait
The Kernel shall provide the capability for a waiting process to specify a priority at which it is
to be unblocked.

9.1.18. Set timeslice
The Kemel shall provide the capability to set the timeslice quantum for each processor.

9.1.19. Enable round-robin time slicing
The Kernel shalil provide the capability to enable the time slicing of processes of equal
priorities in a round-robin manner.

9.1.20. Disable round-robin time slicing
The Kernel shall provide the capability to disable time slicing of processes of equal priorities
in a round-robin manner.

34 CMU/SEI-88-TR-16 (Revised)

9.1.21. Default timeslice settings
The default timeslice settings shali be: time slicing disabled and timeslice quantum set to 1
second.

9.1.22. Setting another process’s scheduling parameters prohibited

The Kernel shall prohibit one process from directly setting another’s scheduling parameters
(e.g., priority, preemption) with the exception of the initial scheduling parameters, which are
defined by the Main Unit at process-creation time.

9.1.23. Process states
A process shall always be in one of four definite states:

1. Running

2. Dead

3. Blocked

4. Suspended

9.1.24. Scheduling algorithms
The Kemel scheduling algorithms shall be:

1. Deterministic, and
2. Of predictable performance. .

9.1.25. Scheduling algorithms provided
The scheduling algorithms shall provide priority-based, preemptive scheduling.

9.1.26. Documentation of scheduling algorithms
The Kernel scheduling algorithms shall be fully documented in the Kernel User's Manual.

9.1.27. Meaning of a timeslice

A process that is preemptable while time slicing is enabled shall execute for no more than
one timeslice quantum before a forced reschedule point occurs.

9.1.28. Priorities incommensurable across processors
The Kernel shall assume that process priorities are incommensurable across processors.

9.1.29. Zero-length waits
The Kemel shall process any zero-length wait® as a wait that has expired immediately.

8p zero-length wait is a duration of zero or less, an absolute time of now or in the past, or any time reference
shorter than that required for the Kernel to perform a context switch.

CMU/SEI-88-TR-16 (Revised) 35

9.2. Performance

9.2.1. Time to set priority
Setting a process priority shall take no more than 57 ps.®

9.2.2. Time to set preemption
Setting a process preemption state shall take no more than 18 ps.10

9.2.3. Time to suspend process
Suspension of a process shall take no more than 43 us.

9.2.4. Time to resume process
Resumption of a process shall take no more than 33 us.

9.2.5. Time to enable or disable time slicing
Enabling or disabling timeslice scheduling shall take no more than 18 ps.!!

9.2.6. Time of context switch

The time needed to suspend execution of the currently running process and resume
execution of a different process shall take no more than 76 ps.12

9.2.7. Dispatch time

The Kemel shall take no more than 33 us to dispatch the highest priority task after it
becomes unblocked.

9No scheduling activity is involved.
'ONo scheduling activity is invoived.
"No scheduling activity is involved.

12Requirement 9.2.3 time + requirement 9.2.4 time.

36 CMU/SEI-88-TR-16 (Revised)

10. Communication Requirements

10.1. Behavior

10.1.1. Reference communication partners

The Kemnel shall provide the capability for a Kernel process to reference all other Kernel
processes and non-Kemel devices with which it communicates.

10.1.2. Send
The Kemel shall provide the capability for a Kernel process to send data to another Kemnel
process or non-Kernel device.

10.1.3. Send with ACK

The Kemel shall provide the capability for the sending Kernel process to request
acknowledgment (ACK) of message receipt by the receiving Kernel process.

10.1.4. Resumption priority for send with ACK

The Kernel shall provide the capability for the sending Kernel process to specify the priority
at which it is to be unblocked when it requests an acknowledgment.

10.1.5. Sender specifies recipient

The Kernel process originating a message sent to a single recipient shall specify the identity
of the receiving Kernel procaess or non-Kernel device.

10.1.6. Receiver physical address hidden

The Kemel process that sends a mesage shall not need to know the physical network
address of the Kernel process or non-Kermnel device to which the message is to be sent.

10.1.7. Send timeout after specified duration

The Kemel shall provide the capability for a Kernel process to terminate a send with ACK
operation if the message is not received after a specified duration.

10.1.8. Send timeout by specified time
The Kernel shall provide the capability for a Kernel process to terminate a send with ACK
operation if the message is not received by a specified time.

10.1.9. Send timeout reporting
The Kemel shall terminate with a status code any send operation whose timeout expires.

CMU/SEI-88-TR-16 (Revised) 37

10.1.10. Send recipient failure detection

The Kernel shall detect the failure of the Kemel process that is to receive a message via a
send with ACK operation.

10.1.11. Send recipient failure reporting

The Kernel shall report the failure of the Kernel process that is to receive a message during
a send with ACK operation.

10.1.12. Receive

The Kernel shall provide the capability for a Kernel process to receive data from another
Kernel process or non-Kernel device.

10.1.13. Resumption priority for receive

The Kernel shall provide the capability for the receiving Kernel process to specify the priority
at which it is to be unblocked.

10.1.14. Kernel identifies sender

The Kemel shall inform the Kernel process that receives the message of the identity of the
sending Kernel process. :

10.1.15. Sender physical address hidden

The Kernel process that receives a message shall not need to know the physical network
address of the Kernel process or non-Kemel device that sent the message.

10.1.16. Receive timeout after specified duration

The Kemel shall provide the capability for a Kernel process to terminate a receive operation
if itis not completed after a specified duration.

10.1.17. Receive timeout by specified time

The Kemel shall provide the capability for a Kernel process to terminate a receive operation
if it is not completed by a specified time.

10.1.18. Receive timeout reporting
The Kemnel shall terminate with a status code a receive operation whose timeout expires.

10.1.19. Message format

The Kernel shall not impose any restrictions on the content, format, or length of a message
other than maximum message size limitations.

38 CMU/SEI-88-TR-16 (Revised)

10.1.20. Message too big on receive

Any attempt to receive a message larger than the work space provided by the receiving
Kernel process shall resuit in the message contents being discarded, but the message
attributes shall be delivered to the receiving Kernel process. These include:

1. Message sender’s process identifier

2. Message tag'3
3. Message length

10.1.21. FIFO message queue
The Kemel process incoming message queue shall be FIFO ordered.

10.1.22. Message queue overflow
The Kernel shali provide two options for managing the incoming message queue when the
arrival of a new message would cause queue overflow:

1. Accept the new message by overwriting old messages; or

2. Reject the new message.

10.1.23. Default overflow handling
The default option for managing incoming message queue overflow shall be to reject the
new message.

10.1.24. Status code on queue overflow
The Kernel shall return a status code on the first receive operation after incoming message
queue overflow has occurred.

10.1.25. Communication failure reporting
When the Kernel detects that a Kernel process has failed, it shall terminate pending
communication operations with that process and return an appropriate status code.

10.1.26. Communication with non-Kernel devices

The Kernel shall provide the capability to communicate with any device (capable of sending
or receiving communication) in the network.

10.1.27. Communication deadlock detection
The Kemel shall prohibit a process from performing a send with ACK operation to itself.

INo tag is received for messages from non-Kernel devices.

CMU/SEI-88-TR-16 (Revised) 39

10.1.28. Common primitives for all communication
The Kernel shall provide a common set of communication primitives for both local and
remote message passing.

10.1.29. Local communication optimization
The Kernel shall optimize communications local within a processor.

10.1.30. Message integrity
The Kemel shall ensure message integrity, including:

1. The entire message reaches the receiver; and
2. Simple transmission errors are detected.

10.1.31. Communication integrity
The Kermnel shall ensure communication integrity, including:
1. The sender of a message has been identified to the Kemel as a Kernei
process or a non-Kernel device.

2. The receiver of a message has been identified to the Kernel as a Kernel
process or a non-Kernel device.

10.1.32. Send with ACK blocks

The sending Kemnel process shall block immediately, and shall remain blocked, until the
requested acknowledgement is received or the timeout expires.

10.1.33. Message Acknowledgment

When a send with ACK is performed, the receiving Kemel shall acknowledge receipt of the
message after the message contents have been copied completely into the work space
provided by the receiving Kernel process.

10.1.34. Acknowiedgments handled automatically
When a send with ACK is performed, the receiving Kemel shall automatically inform the
sending Kernel of the success or failure of message receipt.

10.1.35. Receive potentially blocking
The receiving Kernel process shall block immediately, and shall remain blocked, until a
message is received or the timeout expires.

10.1.36. Message too big reporting
The Kernel shall report the occurence of receiving a message larger than the work space
provided by the receiving Kernel process.

40 CMU/SE!-88-TR-16 (Revised)

10.1.37. Send with ACK timeout
The timeout specified by the send with ACK capability shail be executed on the processor of
the receiving Kernel process.

10.1.38. Receive with a zero-length timeout

Receiving a message with a zero-length timeout'4 shall immediately: cause the pending
message (if any) to be copied into the work space of the receiving Kemel process or
indicate that no message was pending.

10.1.39. Send with ACK with zero-length timeout

If the timeout specified by the send with ACK capability is a zero-length timeout'* and the
receiving Kernel process is not pending on a receive, the Kernel shall immediately return a
negative acknowledgment to the sending Kernel.

10.2. Performance

10.2.1. Transmission time of 0-length message

The time'5 needed to send a 0-length message without acknowledgment to a single process
in the case of two processes on two processors (excluding network transmissicn time) shall
be no more than 25 ps.

10.2.2. Transmission time of large message

The time needed to send a large'®message without acknowledgment to a single process in
the case of two processes on two processors (excluding network transmission time) shall be
no more than 25 ps.

10.2.3. Transmission time of 0-length message with ACK

The time needed to send a O-length message with acknowledgment to a single process
waiting for that message in the case of two processes on two processors (excluding network
transmission time) shall be no more than 50 ps.

A éero-length wait is a duration of zero or less, an absolute time of now or in the past, or any time reference
shorter than that required for the Kernel to perform a context switch.

'S All times exclude message copy time and net transmission time.

'8 The actual size of a "large” message is intentionally unspecified. The intent is to select a message size
that places a non-trivial load on the system.

CMU/SEI-88-TR-16 (Revised) . 41

10.2.4. Transmission time of large message with ACK

The time needed to send a large message with acknowledgment to a single process waiting
for that message in the case of two processes on two processors (excluding network
transmission time) shall be no more than 50 ps.

10.2.5. Transmission time of 0-length message locally
The time needed to send a O-length message without acknowledgment to a single process
in the case of two processes on the same processor shall be no more than 15 ps.

10.2.6. Transmission time of large message locally

The time needed to send a large message without acknowledgment to a single process in
the case of two processes on the same processor shall be no more than 15 ps.

10.2.7. Transmission time of 0-length message locally with ACK

The time needed to send a 0-length message with acknowledgment to a single process
waiting for that message in the case of two processes on the same processor shall be no
more than 20 us.

- 10.2.8. Transmission time of large message locally with ACK

The time needed to send a large message with acknowledgment to a single process waiting
for that message in the case of two processes on the same processor shall be no more than
20 ps.

10.2.9. Time to receive 0-length message
The Kernel overhead time needed to receive a 0-length available message shall be no more
than 25 ps.

10.2.10. Time to receive large message
The Kernel overhead time needed to receive a large available message shall be no more
than 25 ps.

10.2.11. Fixed message overhead
The Kernel shall use no more than 128 bits/message.

42 CMU/SEI-88-TR-16 (Revised)

11. Interrupt Requirements

11.1. Behavior

11.1.1. Interrupt names
The Kernel shall provide the abstraction of an Interrupt name that shall be used in all
Kernel operations involving interrupts.

11.1.2. No exception propagation from interrupt handlers
No exceptions shall be propagated out of the scope of an interrupt handler.

11.1.3. Exit on exception propagation from interrupt handlers

Any attempt to propagate an exception outside the scope of an interrupt handler shall resuit
in the immediate return from the interrupt handler.

11.1.4. Enable interrupt
The Kernel shall provide the capability for a process to enable any available interrupt.

11.1.5. Disable interrupt
The Kernel shall provide the capability for a process to disable any available interrupt.

11.1.6. Default status of interrupts
All interrupts available to the application vode shall be disabled and unbound by default.

11.1.7. Query interrupt status
The Kernel shall provide the capability for a process to query the enabled/disabled status of
any available interrupt.

11.1.8. Simulate interrupt
The Kernel shall provide the capability for a process to simulate any available interrupt in
software.

11.1.9. Define interrupt handler in Ada
The Kernel shall provide the capability for an interrupt handier to be defined in Ada.

11.1.10. Ada interrupt handler profile
The Ada interrupt handler shall be a procedure with no parameters.

CMU/SEI-88-TR-16 (Revised) 23

11.1.11. Bind interrupt handler

The Kemel shall provide the capability to define an Ada code unit as an interrupt handler for
any available interrupt.

11.1.12. Blocking prohibited in interrupt handler

Within an interrupt handler, any attempt to invoke a blocking Kemnel primitive in a situation
where it would block shall be terminated immediately with a status code.

11.1.13. Interrupts not queued
The Kemel shall not queue pending interrupts.

11.1.14. Interrupt implementation visibility

The Kemel shall allow the user unhindered access to the underlying hardware
implementation of interrupts.

11.1.15. Interrupt priority
All interrupt handlers shall execute at a higher priority than any Kernel process.

11.1.16. Reserved interrupts

The Kernel shall reserve the interrupts known to it on the target hardware that it needs to
function, and those that it knows are needed by the Ada runtime.

11.1.17. Available interrupts

The Kernel shall make available to the application all other interrupts known to it on the
target hardware.

11.1.18. State not relevant for interrupt handler

Within an interrupt handler, anv attempt to modify the st..e of a process shall be rejected
immediately with a status code.

11.1.19. Process attributes not relevant for interrupt handler

Within an interrupt handler, any attempt to modify or query process attributes shall be
rejected immediately with a status code.

11.1.20. Interrupt name details hidden

The Kernel shall encapsulate the implementation details associated with the interrupt name
abstraction.

44 CMU/SEI-88-TR-16 (Revised)

11.1.21. Interrupt name visibility
The Kernel shall provide an interrupt name for each interrupt known to it on the target
hardware.

CMU/SEI-88-TR-16 (Revised) 45

11.2. Performance

11.2.1. Time to enter interrupt handler
The time needed to enter an interrupt handler (from moment of preemption until the first
statement of the handler is executed) shall be less than 15 ps.1?

11.2.2. Time to exit interrupt handiler
The time needed to exit an interrupt handler (from the return from interrupt until the
resumption of the preempted process) shall be less than 10 us.

11.2.3. Time to bind interrupt handler
The time needed to bind an interrupt handler shall be less than 20 ps.

11.2.4. Interrupt stack use

The Kemel shall use no more than 16 bytes'® of process stack space per interrupt handler
invocation.

7No context save is included in this time.

'8No context data are included in this allocation.

46 CMU/SEI-88-TR-16 (Revised)

12. Time Requirements

12.1. Behavior

12.1.1. Package Calendar
The Kemel shall support the standard Ada package Calendar (see [ALRM 83], Section 9.6).

12.1.2. Exclusion of Package Calendar
The Kernel shall not require that package Calendar be a part of the load image.

12.1.3. Use of real-time clock
The Kernel shall be capable of using a real-time clock.

12.1.4. Definition of TICK

The Kernel shall export a constant, TICK, that gives the maximum granularity of time
measurement as an integral number of microseconds.

12.1.5. Definition of SLICE
The Kemel shall export a constant, SLICE, that represents the minimum usefully
schedulable unit of time.

12.1.6. Relationship between TICK and SLICE
The value of SLICE shall be a multiple of TICK.

12.1.7. TICK used internally
The Kernel shall maintain local elapsed time accurate to within one TICK.

12.1.8. SLICE basis for scheduling
The Kemel shall maintain all scheduling event times accurate to at least one SLICE.

12.1.9. External time representation
The Kernel shall. make two kinds of time abstractions available to the application:

1. An elapsed time (a relative time, simifar to the Ada type duration); and
2. An epoch'time (an absolute time, similar to the Ada type time).

12.1.10. Adjust local processor elapsed time
The Kernel shall provide the capability to adjust (increment and decrement) local processor
elapsed time.

CMU/SEI-88-TR-16 (Revised) 47

12.1.11. Effect of adjusting local processor elapsed time

Adjusting local processor elapsed time shall affect all pending events (i.e., those pending for
an elapsed time and those pending until an epoch time).

12.1.12. Reset local processor epoch time
The Kernel shall provide the capability to reset the local processor epoch time.

12.1.13. Effect of resetting local processor epoch time
Resetting local processor epoch time shall affect only those events pending until an epoch
time.

12.1.14. Time base reference
The time base reference shall be Julian day 1 (i.e., 1200 on 1 January 4713BCE; see
Joseph Justus Scaliger, De emendatione temporum, 1582).

12.1.15. Read clock
The Kemel shall provide the capability to read current epoch time.

12.1.16. Clock synchronization
The Kernel shall provide the capability to synchronize to the time of the invoking processor
the clocks on all other Kernel processors.

12.1.17. Definition of synchronization
Synchronization of network clocks shall force:

1. All epoch times to be set to the epoch time on the invoking processor.

2. All elapsed times to be identical to the elapsed time on the invoking processor,
within the delta defined in 12.2.5.

12.1.18. Synchronize timeout after duration

The Kernel shall provide the capability for a synchronize operation to terminate after a
specified duration if the synchronization protocol has not successfully completed.

12.1.19. Synchronize timeout at specific time

The Kernel shall provide the capability for a synchronize operation to terminate at a specific
absolute time if the synchronization protocol has not successfully completed.

12.1.20. Resumption priority after synchronize

The Kemel shall provide the capability for the synchronizing process to specify a priority at
which it is to be unbiocked.

48 CMU/SEI-88-TR-16 (Revised)

12.1.21. Duplicate synchronization rejected
The Kernel shall reject an invocation of the sychronize primitive while a previous invocation
is in progress.

12.1.22. Synchronize potentially blocking

The synchronizing process shall block immediately, and shall remain blocked, until the
synchronization is complete or the timeout expires.

12.1.23. Arithmetic operations defined for time

The Kernel shall define arithmetic and comparison operations on both kinds of time and
conversions between them and Ada duration.

12.1.24. Arithmetic exceptions defined for time
The Kernel shall detect range violations caused by arithmetic or conversion operations on
time types, and shall raise the appropriate predefined exceptions.

12.1.25. Time representation
The Kemel shall represent both epoch and elapsed time in units of one microsecond.

12.1.26. Scheduling interval

The Kernel shall not increase scheduling time intervals specified by the application; it may,
however, decrease them to the next lower multiple of SLICE.

12.1.27. Synchronize with zero-length timeout

Synchronize with a zero-length timeout!®shall immediately cause: the synchronize operation
to commence or return a status code.

12.2. Performance

12.2.1. Time to adjust local processor time
The time needed to adjust the local processor time shall be no more than 18 ps.2°

19 zero-length wait is a duration of zero or less, an absolute time of now or in the past, or any time reference
shorter than that required for the Kernel to perform a context switch.

20No scheduling activity is involved.

CMU/SEI-88-TR-16 (Revised) 49

12.2.2. Time to reset epoch time
The time needed to reset the epoch time shall be no more than 18 ps.2!

12.2.3. Time to read clock
The time needed to read the clock shall be no more than 18 us.

12.2.4. Time to synchronize
The time needed to synchronize all local processor clocks shall be no more than 200 ps.22

12.2.5. Accuracy of time synchronization
After synchronization all processor clocks shall be within TBD ps.

2'No scheduling activity is involved.

2ZThig is 4 * (time needed to send a 0-length message); see requirement 10.2.3 in Chapter 10.

50 CMU/SEI-88-TR-16 (Revised)

13. Alarm Requirements

13.1. Behavior

13.1.1. Maximum number of alarms
The user shall be able to define une alarm per process.

13.1.2. Relative alarm time
The Kemel shall provide the capability to set an alarm to expire after a specified duration.

13.1.3. Absolute alarm time
The Kemel shall provide the capability to set an alarm to expire at a specified time.

13.1.4. Kernel defined alarm exception
The Kemel shall define an alarm_expired exception.

13.1.5. Expiration of alarm
The expiration of an alarm shall raise the alarm_expired exception in the process. that set
the alarm.

13.1.6. Transfer priority

When a process sets an alarm, it shall have the éapability to specify a priority at which it is
to execute when the alarm expires and the process is eligible to run.

13.1.7. Set alarm for zero seconds

Setting an alarm to expire in zero time units shall immediately raise the alarm_expired
exception.

13.1.8. Set alarm for non-future duration

Setting an alarm to expire after some non-future duration shall immediately raise the
alarm_expired exception.

13.1.9. Set alarm for time in past

Setting an alarm to expire at some time in the past shall immediately raise the
alarm_expired exception.

CMU/SEI-88-TR-16 (Revised) 51

13.1.10. Cancel alarm
The Kemel shall provide the capability to cancel an unexpired alarm.

13.1.11. Expiration of alarm cancels pending events
The expiration of an alarm shall cancel any other pending event for this process.

52 CMU/SEI-88-TR-16 (Revised)

13.2. Performance

13.2.1. Time to set alarm
Setting an alarm shall take no more than 10 ps.

13.2.2. Time to cancel alarm
Canceling an alarm shall take no more than 10 us.

13.2.3. Time to transfer to exception handier

The time needed to raise the alarm_expired exception and transfer control to the

inner-most enclosing exception handler shall take no more than TBD?23 ps.

23This is compiler-dependent and not under the control of the Kernel.

CMU/SEI-88-TR-16 (Revised)

53

CMU/SEI-88-TR-16 (Revised)

14. Tool Interface

The requirements in this chapter are not mapped on the Kernel primitives in Chapters 15 -
22, nor are the tool interface primitives mapped onto the other requirements. The tool
interface is a non-essential part of the Kemnel, and its existence is not needed for the proper
use and functioning of the Kernel.

14.1. Behavior

14.1.1. Monitoring
The Kernel shall provide the capability to monitor certain intemal data and primitive
operations.

14.1.2. Monitor process
The monitor shall be a process.

14.1.3. Number of monitors
The application may have any number of monitor processes within the application-defined
constraints.

14.1.4. Monitor process is local
The monitor process shall be local to the processor it is monitoring.

14.1.5. Asynchronous logging
The Kernel shalil log the monitored data by sending a message to the local monitor process.

14.1.6. Monitor process attributes
The Kemel shall provide the capability to monitor process attributes of any declared
process.

14.1.7. Specify processes to monitor
The Kernel shall provide the capability to specify the processes on which monitoring is to
occur.

14.1.8. Disable monitoring of process attributes
The Kernel shall provide the capability to disable monitoring process attributes.

CMU/SEI-88-TR-16 (Revised) 55

14.1.9. Process attributes available
The process attributes that shall be available for monitoring are:

1. Process identifier

2. Process state

3. Time process entered state
4. Process priority

5. Process preemption state
6. Process alarm state

7

. Return status code (if the state changes as a result of an invocation of a
Kemel primitive)

14.1.10. Monitor message attributes _
The Kemnel shall provide the capability to monitor message attributes.

14.1.11. Disable monitoring of message attributes
The Kernel shall provide the capability to disable monitoring message attributes.

14.1.12. Message attributes available
The message attributes that shall be available for monitoring are:

1. Sender’s process identifier

2. Recsiver's process identifier

3. Time message was sent or received
4. Message tag

5. Message length

14.1.13. Monitor message contents
The Kernel shall provide the capability to monitor message contents.

14.1.14. Disable monitoring of message contents
The Kemel shall provide the capability to disable monitoring message contents.

14.1.15. Process table available
The Kernel shall provide the capability to read the Kernel's process table, which includes:

1. Process name

2. Process identifier

3. Process state

4. Processor address
5. Size of process table

56 CMU/SEI-88-TR-16 (Revised)

A

14.1.16. Interrupt table available
The Kernel shall provide the capability to read the Kemel's interrupt table, which includes:

1. Interrupt
2. State
3. Interrupt condition

14.1.17. No communication overhead incurred
The Kernel shall not perform any background Kernel-to-Kernel communication to collect
process, message, or interrupt attributes.

14.1.18. Monitor requests ignored
The Kernel shall ignore all requests to monitor processes that are unknown, aborted, or
terminated when monitoring is enabled.

14.2. Performance

14.2.1. Time to define a monitoring activity
The definition of a monitoring activity shall take no more than 10 ps.

14.2.2. Time to terminate a monitoring activity
The termination of a monitoring activity shall take no more than 5 us.

14.2.3. Time to process a monitoring activity
The processing of a monitoring activity shall take no more than 5 ps.

14.2.4. Tool predictability
The tool interface primitives shall be predictable in their use of time and memory resources.

14.2.5. Time measured consistently
The Kemel shall perform all time measurements at a consistent point in the Kermnel code.

14.2.6. Data logged consistently
The Kemet shall send all logging messages at a consistent point in the Kernel code.

CMU/SE!-88-TR-16 (Revised) 57

CMU/SEI-88-TR-16 (Revised)

lll. Kernel Primitives

The logical result of the models, assumptions, and restrictions in Chapter 4 is a Kemel
familiar to most embedded systems software engineers. The Kemel combines many of the
known and proven forms from traditional (i.e., non-Ada) systams with some of the desired
“extensions” to Ada (based, in part, on the thinking embodied in the [artewg-interface
86] report), resulting in a software artifact that can be ported and used by Ada applications.
These capabilities appear to the application program as a collection of Ada
packages—reusable components—that, together with certain application programming
conventions, can be combined with the Ada application to execute in a distributed, hard
real-time, embedded environment.

The basic format of each chapter is:

« General discussion of implications the Kernel models on the primitives.
e The Kernel primitives, their functionality and status codes.

 Blocking conditions, where appropriate.

¢ Status codes and their explanations (when needed).

The Kernel communication model presents a set of primitives to the application, and
implements those primitives on an underlying set of distributed processors connected by
data paths. The model, the implementation, and the intended mode of use, can all be
related to the International Standards Organization (ISO) Reference Model (see
[Zimmermann 80] and [Tanenbaum 81]), which provides a conceptual framework for
organizing the Kernel primitives, as shown in Figure 14-1. The ISO Reference Model
identifies seven layers, named, from lowest to highest:

1. Physical

2. Data Link

3. Network

4. Transport

5. Session

6. Presentation
7. Application

The target hardware provides Layer 1. The Kernel implements Layers 2 to 4, and therefore
presents to the application the Transport layer. The Kernel thus encapsulates within itself
the Data Link and Network layers, rendering them invisible to the application. The
application code can implement Layers 5 to 7, in part by using other Kernel primitives.

CMU/SEI-88-TR-16 (Revised) 59

Layer Kernel Equivalent

i

7

Application

Created by user

Presentation Created by user

|

m o [

. Kernel primitives: declare process, create process,
Sessmn allocate device receiver, and initialization complete

i

& M

Kemel primitives: send message,
Transport send message and wait, and receive message

—

Null (can be built by user)

3 Network
- i
Data Link Datagram model
: |
1 Physical Built by using Kernel primitives: network configuration

table, initialize master processor, and initialize
subordinate processor

Figure 14-1:

ISO Model to Kermnel Mapping

60

CMU/SEI!-88-TR-16 (Revised)

Physical Layer

The Physical layer is represented by the hardware data paths, which support the
transmission of a serial bitstream between processors. These hardware data paths are used
by the Kernel in a packet switching mode; that is, a sequence of bits—a frame—is sent at
the discretion of the originator, with no implied reservation of resources or preservation of
state between frames.

Data Link Layer

This is the layer at which basic error detection and recovery and flow control may be
provided. The Kernel uses a simple datagram model, in which a frame is transmitted with
no acknowledgment, no error correction, and no flow control. Minimal error detection is
achieved by using a datagram checksum,24 but any recovery is performed by application
code (i.e., above the Transport layer). Similarly, datagram storage overflow is recognized
and reported at the Transport layer.

Network Layer

Currently, the Kernel has a null Network layer. The Kernel assumes that point-to-point
communication is available between any pair of nodes (processors). Routing is
accomplished trivially in the sender by dispatching a point-to-point datagram directly to the
receiver; no alternative routing is provided.

However, since the abstraction presented by the Kemel to the application is above this
layer, a real Network layer could subsequently be added without requiring any application
code to be changed.

Transport Layer

The Kernel builds the Transport layer by using the network connections identified by Kernel
primitives and data structures at the Physical and Session layers.

The physical network is described by a Network Configuration Table (shown in Figure 15-1),
a copy of which is maintained in each processor. This table is created by the application
developer and is communicated to the Kemel during application initialization. Once that
information is provided, the Kemel verifies the network connectivity and opens the physical
connections between processors.

Subsequently, the logical processes and their physical sites are communicated to the
Kernel. The model on which the Kernel is based assumes that all processes are created at
initialization time, that a process never moves, and that a process once dead is never
restarted. The Kernel therefore computes the logical-to-physical mapping once only and
never subsequently changes it. Attempts to communicate with dead processes are treated
as transport errors.

24Null in the current implementation.

CMU/SEI-88-TR-16 (Revised) 61

The Transport layer also performs the conversions between messages and the underlying
datagrams. Currently, this is done trivially by using one datagram per message or per
acknowledgment, and if necessary by restricting the maximum message size accordingly.

The Transport layer is the layer visible to the application. It supports unacknowiedged send
operations and end-to-end acknowledged send operations. All errors detected in this or any
lower layer are reported at this layer, in the form of status codes returned by the Kemel
primitives.

Session Layer

This layer is implemented by application code. Since it establishes logical connections
between processes, its presence is required, and the application developer must write
specific code to create it. This code is part of the application initialization code; it must be
present on every processor and, in Ada terms, must be part of the Main Unit on that
processor.

The model is one of a set of logical processes, each with an application-defined logical
name and each with a single incoming message queue for the reception of messages from
other processes.

The Kemel primitive declare_process indicates an intent to create or communicate with a
given named process. It establishes the mapping between application-level process names
and Kernel internal names.

The Kernel primitive create_process creates the process environment, establishes its
incoming message queue, allocates stack resources, and makes that queue available to the
network. Thereafter, one process may communicate with another.

Presentation Layer

In the Kernel model, the Presentation layer performs no transformation of data. Rather, it
performs the translation between Ada values — values of application-defined data types —
and message values. This is done by application code. The purpose of the Presentation
layer is to establish above the Transport layer the strong typing of the Ada language, by
ensuring that communicating processes pass only strongly typed data and do so by
referencing a common set of data conversion routines bound to a common Ada data type.

Application Layer

This layer uses the Presentation layer for whatever purpose the code requires. The model
here is of parallel independent threads of control executing Ada code, identifying each other
by application-level symbolic names, and communicating by passing values of Ada data
types.

62 CMU/SEI-88-TR-16 (Revised)

15. Processor Management

There are two steps to using the system model shown in Figure 4-1. Note that the
initialization of the system topology has been deliberately kept simple. This facliitates the
development of the Kemel, keeps the initialization interfaces simple, and allows the users of
the Kemel to develop more readily their own system-specific initialization software. First,
the physical topology of the system must be defined; secondly, the system must be
Initlalized. The approach taken to achieve the first step requires that the application
engineer first define the network configuration in a manner that the Kemel understands.
This is done using the Network Configuration Table (NCT) shown in Figure 15-1.

Logical Physical Kernel Needed Initialization
Name Address Device To Run Order

Figure 15-1: Sample Network Configuration Table (NCT)

The NCT provides the minimum information needed by the Kernel to perform system
initialization and its inter-process communication functions. It is supplied by the application
to the Kernel, it is implementation and hardware dependent and is available to the
application for implementation of higher levels of network integrity. For each device
accessible over the network, this table defines the following information:

o Logical name: Logical (string-valued) name for the device.

o Physical address: Hardware-specific information needed to access the device
ove: the system bus.

e Kemnel device: Identifies those devices that execute the Kemel. It is possible to
communicate with non-Kemel devices, so they mus: understand enough of the
communication protocols to make this possible. But they are not expected to
participate in the network initialization protocol. Non-Kernel devices place the
burden of initialization and message formatting upon the application. That is,
the Kemel routes messages to and receives messages from non-Kemel
devices, but it is the responsibility of the application to format and unformat
these messages. ‘

» Needed to run: (dentifies those devices that must be available at initialization
time in order for the application to begin execution. This could be used to mark
failed or spare devices at startup.

o |nitialization order: identifies the order in which the Kemel nodes of the network
are to be initialized. The default, unless specifically overridden, Is for the nodes
to initialize in the order in which their entries occur in the NCT.

CMU/SEI-88-TR-16 (Revised) 63

To achieve the second step, system initialization, the Kernel has defined a simple
initialization protocol (shown in Figure 15-2). This protocol requires that one processor,
called the Master, be in charge of the initialization process. All other processors in the
network are subordinate to this processor during the Kernel's initialization process. The
Master is responsible for:

¢ Ensuring the consistency of the NCT among all the subordinate processors.
e Issuing the "Go" message to all the subordinate processors.

Some key points to note about this protocol are:

¢ The Master processor is a single point-of-failure in the system.

e The Master assumes it has the correct and complete version of the Network
Configuration Table.

« If any of the following problems occurs at initialization, then the network may fail
to become operational:

1. No Master processor declares itself.
2. The Master processor fails to initialize successfully.

3. More than one Master processor declares its presence.
4. The Network Configuration Tables are found to be inconsistent.

These points can be addressed by application-specific fauit tolerant techniques (redundant
hardware, voting schemes, etc.), which are in the domain of the application, not the Kemel.
This is discussed further in the Kernel User's Manual. '

15.1. Primitives

15.1.1. Initialize Master processor

This primitive identifies the invoker as the processor that is going to control network
initialization. It causes the Kernel to initiate the Master initialization protocol shown in part
one of Figure :5-2. It requires a timeout that is used to controi how long the Master
processor will wait for any one subordinate to reply to any initialization protocol message.
The expiration of this timeout informs the Master processor that network-wide initialization
has failed; it is the responsibility of the Main Unit to relay this information to the user.

The initialization protocol shown in Figure 15-2 consists of two phases:

1. Network phase: The Master processor interrogates each subordinate to
determine its view of the network (embodied in the NCT).

2. Commence processing phase: The Master processor tells each subordinate to
start normal processing.

This primitive synchronizes the clocks on each of the subordinate processors with the
Master processor’s clock.

This primitive can give rise to the following status codes:

64 CMU/SE!-88-TR-16 (Revised)

Master Initialization

Protocol
Kernel
initializing
Kernel ready
0 Declare seoff as Master
Send "Master Ready”
Waiting for No NCT errors found
| NCT message Send "Master Ready"
Initialization timeout expired NCT Message Received
Broadcast "Network Failure™
Network
initialization | @—————————— Compare NCTs
failure NCT errors found
i All NCTs consistent
Send "Go" message
Waiting for
"Go ACK"
Acknowledge timeout expired | _Message "Go ACK" received
Broadcast "Network Failure” Send "Go" message

2 All "Go ACK"
Mossgges received

Key Initialization Pint

0 The Master is alive and ready. @

i The Master knows that the physical topology of the
network is consistent across processors.

2 All processors know that the physical topology of the network is
consistent.

Figure 15-2: Network Initialization Protocol (Part 1 of 2)

CMU/SEI-88-TR-16 (Revised)

Key Initialization Poi

Subordinate Initialization

Protocol
Kernel
initializing
Kernel ready
Wait for
Master
0 "Master Ready" received
Send NCT to Master
Network -
initialization [€- ..G‘g’,’"":’;gs':;e
failure Master failure timeout
? Broadcast "Network Failure”
"Go" message received
2 Send "Go ACK™ Message
Configure
processor
3 Process creation complete
Broadcast “Initialization Complete”
Waiting for
Network failure timeout _ network
initialization -

Broadcast "Network Failure”
4 All "Initialization Complete” messages received

Start Scheduler
Disable Ada Main Unit

Processor
executing

Processor configuration is complete;

3 waiting for remaining processors to complete.
4 All processors know that the logical topology of the
network is consistent. The application is ready
to execute.
Figure 15-2: Network Initialization Protocol (Part 2 of 2)
66 CMU/SEI-88-TR-16 (Revised)

e OK

e Calling unit not Main Unit

¢ Configuration tables inconsistent

» Master initialization timeout expired
o Netwark failure

¢ Processor failed to ACK go message
» Processor failed to transmit NCT

15.1.2. Initialize subordinate processor

This primitive identifies the invoker as a subordinate (i.e., non-Master) processor and begins
execution of the subordinate initialization protocol shown in part two of Figure 15-2. This
primitive has an optional timeout parameter, which is used to set a bound on how long the
subordinate will wait for the Master processor to initialize. If this timeout expires, an
alternative Master processor may be desighated.

This primitive can give rise to the following status codes:

1. OK

2. Calling unit not Main Unit

3. Network failure

4. Subordinate initialization timeout expired

15.1.3. Start subordinate processors
Deleted - 1 July 1988.25

15.1.4. Create network configuration

This primitive creates the Network Configuration Table shown in Figure 15-1. This creation
is a static, compile-time operation performed by the Kernel user. A complete copy of the
NCT must exist on every Kemnel processor in the network.

This primitive always succeeds.

15.2. Blocking Primitives

This section lists which of the primitives described above may block the invoking process
and the conditions under which they will block:

1. Initialize Master processor: Always blocks until one of the following conditions
occurs:

a. All processors in the network required for initialization have transmitted

253ubsumed by Initialize Master Processor (15.1.1).

CMU/SEI-88-TR-16 (Revised) 67

their NCTs to the Master and have acknowledged the "Go" message,
or

b. The initialization timeout expires.

2. Initialize subordinate processor: Always blocks until one of the following
conditions occurs:

a. The Master has requested the processor's NCT and the subordinate
has acknowledged the "Go" message, or

b. The initialization timeout expires.

15.3. Status Codes

1. Calling unit not Main Unit: Informs the invoker that this primitive may be
invoked only by the Main Uni’ on a processor (and hence only during
initialization).

2. Configuration tables inconsistent: A discrepancy was found between the
Network Configuration Table of a subordinate processor and the Network
Configuration Table of the Master processor.

3. OK: Normal, successful completion.

4. Processor failed to ACK go message: Indicates that a processor has failed at
system startup time.

5. Processor failed to transmit NCT: Indicates that a processor has failed at
system startup time.

6. Master initialization timeout expired: Informs the invoker that the Master failed
to completely initialize the network within its alloted time.

7. Subordinate initialization timeout expired: Informs the invoker that the
subordinate failed to receive the correct sequence of messages from the
Master processor within its alloted time.

8. Network failure: Informs the invoker of a failure in the network communications
medium where the reason for the failure cannot be determined by the
primitive.

68 CMU/SEI-88-TR-16 (Revised)

16. Process Management

This chapter outlines the primitives provided to the Ada application for creation and
termination of Kemel processes. The model used for Kernel process names is this: to
communicate with a process, one must know the name of the process either at compile time
or as constructed at runtime. The name of a process comes in two forms:
1. The logical name given to the process by the developer, encoded in Ada as a
character string, and
2. The internal name given to the process at runtime by the Kernel.

Hereafter, the internal name of a process is called the process ID (PID) or process identifier,
the term process name refers to the logical name of the process. However, knowing the
name of a process does not guarantee the availability of the process at runtime. This is one
class of faults that the Kernel is able to detect and report.

16.1. Primitives

16.1.1. Declare process

This primitive declares all Kermel processes that will execute locally, all remote Kemel
processes with which communication may occur, and any remote, non-Kernel devices with
which communication will occur. This primitive may be invoked only by the Main Unit.

This primitivé can give rise to the following status codes:

e OK

e Calling unit not Main Unit

« Insufficient space

» Process already exists

« Unknown nori-Kemel device

16.1.2. Create process

This primitive creates an independent thread of control. It may be invoked only by the Main
Unit of a processor to create the Kemel processes that will share that processor. For each
process, the application provides the following information to the Kemel:

o Process attributes: stack size, and code address
» Scheduling attributes: priority and preemption28

o« Communication attributes: maximum message size, message queue size, and
message queue overflow handling

Once the Kernel has all the process-related information, it constructs the execution
environment, shown in Figure 16-1, around the process. This environment consists of:

28A process will always be able to modify its own scheduling information at a later time.

CMU/SE-88-TR-16 (Revised) 69

e Process stack, containing:
» Stack plug
* Dummy call frame
* Local process variables

e Process information record, containing:

* Message queue .
+» Schedule attributes
* Process code

« Context save area

Process Table Entry

Stack Pointer
Code Pointer
Process Attributes
Context Save Area
‘I Schedule Attributes

Comm Attributes

Other Attributes

Process
Information
Record

Incoming
Message
Queue

Figure 16-1: Process Execution Environment

Process
Stack

stack plug

dummy call frame

local variables

Process
Code

Procqss
Termination
Code

70

CMU/SEI-88-TR-16 (Revised)

This primitive can give rise to the following status codes:

e OK

e Calling unit not Main Unit

« lllegal process address

s lllegal process identifier

« Insufficient space

¢ No Kernel process on non-Kemel device
¢ Process already created

16.1.3. Initialization complete

This primitive asserts that the declaration and creation of all processes on this processor is
now complete. It is invoked by the Main Unit of that processor after all processes have been
declared and/or created. This primitive effectively tells the Kernel “I'm alive and ready to
rolli” — the application code is ready to run — and the Kemel relays this information to all
the other Kernels in the network. This primitive takes an optional timeout parameter to
detect processor failure after network initialization.

This primitive can give rise to the following status codes:

e OK

¢ Calling unit not main unit

« Final sync initialization timeout expired
o Network failure

» Process initialization failure

¢ Process maximum exceeded

16.1.4. Allocate device

This primitive assigns a specific process to be the recipient of all messages originating from
a specific non-Kemel device although any process can send a message to a non-Kermel
device.?’

This primitive can give rise to the following status codes:

e OK
¢ No such device exists
» Replacing previous allocation

270t course, it must be properly formatted for the device by the application.

CMU/SEI-88-TR-16 (Revised) I

16.1.5. Die

This primitive terminates the calling process (self-termination only) and may be invoked by
any process at any time. Since processes have no dependents, each one terminates
individually. Messages pending when a process terminates are discarded, as are messages
that arrive after a process has terminated. All other resources held by the process are also
released. Note that only Kernel processes may be terminated by this primitive. Terminating
a non-Kemel process is the user s responsibility.

This primitive can give rise to the following status codes:

e OK
o lllegal context for call

16.1.6. Kill

This primitive terminates the specified process and may be invoked by any process at any
time. This can be applied to any named process, including the calling process. This is an
"abnormal” termination, and causes an immediate action by the Kernel. If the terminated
process is remote, the actual processing occurs after return from this primitive on the
terminated process’s host node. Messages pending when a process is terminated are
discarded, as are messages that arrive after a process has terminated. All other resources
held by the process are also released.

This primitive always succeeds.

16.1.7. Who am |
This primitive allows a process to obtain its own process identifier and may be invoked by

any process at any time.
This primitive can give rise to the following status codes:

e OK
o lllegal context for call

16.1.8. Name of

.This primitive allows a process to obtain the logical name of a process for which it has a
process ID. It may be invoked by any process at any time.

This primitive always succeeds.

72 CMU/SEI-88-TR-16 (Revised)

16.2.

Blocking Primitives

This section lists which of the primitives described above may block the invoking procaess
and the conditions under which they will block:

1.

16.3.

o0}

10.
11.
12.
13.
14,

15.

16.

Initialization compiete: Always blocks until one of the following conditions
occurs:

a. All the needed initialization complete messages are received, or
b. The initialization timeout expires.

Status Codes

. Calling unit not Main Unit.
. Finai sync initialization timeout expired.
. lllegal context for call: The requested operation cannot be performed by an

interrupt handler.

. lllegal process address: The code address of the process is not a valid Ada
address.

. lllegal process identifier: A nonexistent process identifier was used.

. Insufficient space: Insufficient memory exists for the creation of another
process.

. Network failure.

. No Kernel process on non-Kernel device.
. No such device exists: .he requested non-Kernel device is not known at the

requesting site.

OK.

Process already created.
Process aiready exists.
Process initialization failure.

Process maximum exceeded: Declaration exceeded maximum number of
processes allowed.

Replacing previous allocation: The current process allocated to the device is
replaced by the invoking process.

Unknown non-Kernel device: No such device identified in the NCT.

CMU/SEI-88-TR-16 (Revised)

74

CMU/SEI-88-TR-16 (Revised)

17. Semaphore Management

The Kernel provides the traditional Boolean ("Dykstra") semaphore facility, slightly revised to
be consistent with the overall philosophy of the Kernel primitives.

A semaphore is an abstract data type. Objects of this type may be declared anywhere, but
since semaphores are used to build process synchronization systems, they are clearly best
declared in the Main Unit of a processor. A semaphore is visible only on the processor on
which it is declared, and therefore can be used only by processes local to that processor, for
example for application-level control of shared memory.

At any time, a semaphore is in one of two states:

e FREE: The semaphore is free, or

e CLAIMED(N): The semaphore is claimed, and N processes are awaiting its
release. These processes are blocked on a FIFO queue associated with the
semaphore.

17.1. Primitives

17.1.1. Declare semaphore
A semaphore is declared by a normal Ada declaration. Its initial state is FREE.

This primitive always succeeds.

17.1.2. Claim semaphore

This primitive attempts to claim the semaphore. If the semaphore was free, the primitive
succeeds, the semaphore state changes to CLAIMED(O), and the invoking process
continues.

If the semaphore was CLAIMED(N), then the invoking process blocks. The state changes to
CLAIMED(N+1), and the process is appended to the semaphore queue. The call can
optionally specify a timeout and a resumption priority.

This primitive can give rise to the following status codes:

* OK
¢ Ciaim timed out
« lllegal context for call

CMU/SE!-88-TR-16 (Revised) 75

17.1.3. Release semaphore

This primitive attempts to release a semaphore previously claimed. The state necessarily
must be CLAIMED(N). If N=0, no other process is waiting, and the semaphore becomes
FREE. Otherwise, the state becomes CLAIMED(N-1), and the process at the head of the
semaphore queue is given the semaphore and becomes suspended.

Note that a release cannot block, but may cause the invoking process to be preempted if the
process at the head of the queue has a higher priority.

This primitive can give rise to the following status codes:

e OK
o lllegal context for call
* Not my semaphore

17.2. Blocking Primitives

This section lists which of the primitives described above may block the invoking process
and the conditions under which they will block:

1. Claim: Blocks only when the state of the requested semaphore is
CLAIMED(N). It will unblock when one of the following conditions occurs:

a. The semaphore is released and the invoking process is at the head of
the semaphore wait queue, or
b. The claim timeout expires.

17.3. Status Codes

1. OK.
2. Claim timed out: Operation unblocked due to timeout expiration.
3. lllegal context for call.

4. Not my semaphore: Attempt to release a semaphore that has not previously
been claimed by the invoker.

76 CMU/SEI-88-TR-16 (Revised)

18. Schedule Management

This chapter outlines the basic scheduling mechanisms to be provided by the Kernel. The
scheduling paradigm used by the Kernel is a simple, prioritized, event-driven model that
permits the construction of preemptive, cyclic, and non-cyclic processes. To achieve this,
there are four types of events in this model:

1. Receipt of a message (synchronous event).

2. Receipt of a message acknowledgment (asynchronous event).
3. Expiration of a primitive timeout (asynchronous event).

4. Expiration of an alarm (asynchronous event).

The scheduling primitives are discussed below, and the alarm primitives are discussed in
Chapter 22. This paradigm allows the user to create:

e A non-cyclic process that executes until preempted by a higher-priority process.
» A set of non-cyclic processes that execute in a round-robin, time sliced manner.

e An event-driven process that blocks when trying to receive a ~essage. It is
resumed from the point of suspension, when it is able to proceed and when the

priority admits.

¢ An event-driven process that blocks itself for a specified period of time (or
equivalently, until a specific time) and is resumed at a specific priority (this
allows a "hard" delay to be implemented).

* A cyclic process that continuously executes a body of code (and that can detect
frame overrun).

To support these paradigms, the following set of scheduling attributes is defined:
e Priority:

+ Every process has a priority.

« Priorities are relative within one processor.

+ Priorities are incommensurable across processors.

* A process may change its priority dynamically.

» Priorities are strict and pre-emptive; higher-priority processes always shut
out lower-priority processes.

« Blocking primitives allow the caller to specify a resumption priority, which
may be different from the priority at the point of invocation. The
resumption priority is the priority of the process when it unblocks.

e Timeslice:

» The maximum length of time a process may run before another process
of the same priority is allowed to run.

+ A property of a set of processes on the same processor and all of the
same priority.

« Time slicing cannot override priority; it applies only among processes of
equal priority.

CMU/SEI-88-TR-16 (Revised) 77

« Any process may enable or disable time slicing for the entire processor.
» Any process may set the timeslice quantum.

« A process may aliow (or disallow) itself to be sliced by setting its
preemption status (if preemptable, the process may be time sliced; if not
preemptable, the process may not be time sliced by another process of
the same priority).

Given this scheduling regime, a process is always in one of four states:

1. Running: A running process is executing on its processor, and it continues to
run until something happens. If interrupts are enabled, they occur
transparently unless they cause a change of process state. A running process
ceases to run when it: dies, invokes a blocking Kermel primitive, is time siiced,
is killed by another process, or is preempted by a higher-priority process. The
first three are voluntary actions on the part of the process, while the last two
are actions performed by the Kernel. '

2. Dead: A dead process is unable to run again. A process dies in one of five
ways: by completing execution, by raising an unhandled exception, by causing
an unrecoverable error, by killing itself, or by being killed by another process.
Processes are not expected to die, and any subsequent attempts to interact
with a dead process result in errors.

3. Blocked: A blocked process is unable to run. A process may only become
blocked as a result of its own actions. These blocking actions are waiting for:
the arrival of a message, the arrivai of a message acknowledgment, the
completion of a clock synchronization, a specific duration, a specific time, or
the avaifability of a semaphore. A process becomes unblocked when the
blocking event occurs (at which time the process transitions to the suspended
state). An unblocked process does not immediately resume execution; it
resumes execution only when the Scheduler so decides. However, the
process can affect this decision by specifying a resumption priority in the
primitive invocation.

4. Suspended: A suspended process is able to run, but cannot run because a
process of higher or equal priority is running. A process may be resumed
when the running process blocks, lowers its own priority, or is time sliced.

These states and the transitions between them are shown in Figure 18-1.

For instance, a running process becomes blocked by trying to receive when no message is
pending. It becomes unblocked (but suspended) when the message arrives. It becomes
running when its priority permits. A running process can also cal! wait, to block itself at any
time. The waiting process becomes suspended and thus ready to run when its delay
expires. Further, a running process may be preempted, that is, forcibly suspended agamst
its will, to allow a higher-priority process to run or to be time sliced.

78 CMU/SE!-88-TR-16 (Revised)

Kill
Die

Claim

Wait Preempt
Receive_message Slice
Send_message_and_wait
Synchronize

b Y
Blocked _ S
Delay expired \

Timeout expired

Message received
Acknowledge received
Semaphore available
Synchronize completed

Resume

Kill

Key

Label: User - initiated action
Label: Kernel-initiated action

Schedule
State

Figure 18-1: Process States

18.1. Primitives

18.1.1. Set process preemption

This primitive changes the preemption state of the calling process. A process may set only
its own preemption state. This primitive may be invoked by any process at any time.

CMU/SEN-88-TR-16 (Revised) 79

This primitive can give rise to the following status codes:

e OK
« |llegal context for call

18.1.2. Get process preemption

This primitive queries the current value of the preemption state of the calling process. A
process may query only its own preemption state. This primitive may be invoked by any
process at any time.

This primitive can give rise to the following status codes:

e OK
« lllegal context for call

18.1.3. Set process priority _
This primitive changes the priority of the calling process. A Kernel process may set only its
own priority. This primitive may be invoked by any process at any time.

This primitive can give rise to the following status codes:

¢ OK
« lllegal context for call

18.1.4. Get process priority
This primitive queries the current value of the priority of the calling process. A process may
query only its own priority. This primitive may be invoked by any process at any time.

This primitive can give rise to the following status codes:

* OK
» lllegal context for call

18.1.5. Wait
This primitive allows the invoker to suspend its own execution:

» Until a specified time, or

 For a specified duration.
An optional resumption priority may aiso be specified. This primitive may be invoked by any
process at any time.

This primitive can give rise to the following status codes:

* OK
« lilegal context for call

80 ~ CMU/SEI-88-TR-16 (Revised)

18.1.6. Set timeslice
This primitive sets the timeslice quantum for the processor.
This primitive can give rise to the following status codes:

e OK
o lllegal timeslice

18.1.7. Enable timeslicing
This primitive enables the Kernel to perform round-robin, timeslice scheduling among
processes of equal priority.

This primitive always succeeds.

18.1.8. Disable timeslicing
This primitive disables round-robin, timeslice scheduling. After execution of this primitive,
scheduling is priority-based preemption.

This primitive always succeeds.

18.2. Blocking Primitives

This section lists which of the primitives described above may block the invoking process
and the conditions under which they will block:

1. Wait: Always blocks until the delay (i.e., the specified absolute or eiapsed
time) expires.

18.3. Status Codes

1. OK.
2. illegal context for call.
3. lllegal timeslice.

CMU/SEI-88-TR-16 (Revised) 81

82

CMU/SEI-88-TR-16 (Revised)

19. Communication Management

This chapter outlines the primitives provided for communication between Kernel processes
(see Chapter 15 for details about how the communication model ties into the network
model). The communication model is based on the following premises:

¢ All communication is point-to-point.

¢ A sender must specify the recipient.

¢ A recipient géts all messages and is told the sender of each.
¢ A recipient cannot ask to receive only from specific senders.
* Messages do not have priorities.

The purpose of a message is to convey information between processes. To the Kemel, a
message is just a sequence of uninterpreted bits. The Kernel provides the untyped
primitives; the users may build above them whatever application-specific functionality is
needed. Note that any two (or more) communicating processes are free to define a
common package containing their interface message types. Communication between
processes on a single processor is optimized.

Figure 19-1 illustrates this communication model. In this figure, process Merlin on Processor
a sends a message to process Vivian on Processor b. This is accomplished by Merlin's
informing the Kernei of the message content and the logical destination of the message (i.e.,
Vivian). The Kernel on Processor a takes this message, formats the datagram to hold the
message, and transmits the datagram over the network to Processor b, where it knows
Vivian resides. When the message arrives at Processor b, the Kemel there rebuilds the
message from the datagram and queues it for Vivian until Vivian requests the next
message. |f Merlin had wanted acknowledgment of message receipt by Vivian, the Kernel
on Processor b would have formatted an acknowledgment datagram and sent it back to
Processor a after Vivian had asked for (and received) the message.

19.1. Primitives

19.1.1. Send message

This primitive is used to send a message from one process to another, without waiting for
acknowledgment of message receipt. This primitive may be invoked by any process at any
time.

This primitive can give rise to the following status codes:

* OK
¢ Receiver dead
» Receiver never existed

CMU/SEI-88-TR-16 (Revised) 83

Processor a Processor b

Main Main
Unit Unit

PN

b b
a) a a ivi
Merlin P P_‘i [\ﬁa"_J
F’1 P3 P4 l 1 _2 ,
Send Message Receive
to Vivian Message
Y
Send Recei
Primitive | Kernel Datagram|) > pﬁfﬁ{.vv";
e
itd SNANRN N
User supplied N § Q\& \Q
field SNNNEENNNNN I N
| Checksum
Message Text
& :ﬁelmel supplied —® Message Tag
\ ield = Message Length
— Receiver's Process ldentifier
—® Sender's Process Identifier

—® Receiver's Network Address
—® Sender's Network Address
—— Remote Timeout

—# Message Identifier

— Kernel Operation

Figure 19-1: Datagram Network Model

19.1.2. Send message and wait

This primitive is used to send a message from one process to another; the sender blocks
while waiting for acknowledgment of message receipt by the receiving process. This
primitive may be invoked by any process at any time. However, it may not be invoked by an
interrupt handler. An optional timeout may be specified. If a timeout is specified, the Kemel
performs a remote timeout; that is, the timeout is bundled with the message and executed
by the Kemel of the receiving process. If the timeout expires, the message is purged from

84 CMU/SE!-88-TR-16 (Revised)

the receiver's message queue and the invoking process is notified. The Kernel rejects all
calls where the recipient is the sender.

This primitive can give rise to the following status codes:

e OK

¢ lllegal context for calil

* Message not received
* Message timed out

o Network failure

¢ Receiver dead

¢ Receiver is sender

» Receiver never existed

19.1.3. Receive message

This primitive is used to receive a message from another process. This primitive may be
invoked by any process at any time. The Kemel automatically performs any required
acknowledgments. An optional timeout may be specified. If a timeout is specified, the
Kernel performs a local timeout. If the timeout expires, the invoking process is notified. If this
primitive is invoked with a zaro-duration timeout, it does not block, but returns immediately -
with a status code should no message be available. This primitive may nct be invoked by
an interrupt handler.

This primitive can give rise to the following status codes:

e OK

¢ Buffer too smalli for messagé
« lllegal context for call

* Message timed out

* No message available

19.2. Blocking Primitives

This section lists which of the primitives described above may block the invoking process
and the conditions under which they will block:

1. Send message and wait: Always blocks until one of the following conditions
occurs:
a. The receiving process has requested and received the message, or
b. The - message timeout expires.

2. Receive message: Blocks only if there is no message currently available for
the process and a positive timeout has been specified. If no message is
available, then it blocks until one of the following conditions occurs:

CMU/SEI-88-TR-16 (Revised) 85

a. A message has arrived for the process, or
b. The timeout expires.

19.3. Status Codes

1. OK.

. Buffer too small for message.

. lllegal context for call.

. Message timed out: Timeout expired without operation completing.

. Message not received: The message was discarded from the receiver’s
message queue.

. Network failure.
. No message available: Occurs in situations where a zero timeout is specified.
. Receiver dead: Destination process has terminated or been aborted.

. Receiver is sender: A process cannot perform an acknowledged send with
itself.

10. Receiver never existed.

N 0N

W o N O

86 CMU/SEI-88-TR-16 (Revised)

20. Interrupt Management

This section outlines the interrupt control primitives provided by the Kernel. There are two
parts to the Kernel's view of interrupts: interrupts themselves and interrupt handlers. The
interrupt model used by the Kernel is based on the following premises:

¢ There are devices that can interrupt the processor.
e There are three classes of interrupts:
1. Those reserved by the Ada runtime environment (divide-by-zero,
floating-point overflow, etc.).
2. Those reserved by the Kernel (such as the clock interrupt).
3. Those available to the user (everything not in 1 and 2 above).

All the primitives described below apply only to the third class of interrupts.

e The device interrupt may be either enabled or disabled. If the interrupt is
disabled, the device cannot interrupt, regardless of how badly it might want to.

e The Kernel does not queue interrupts nor does it hide hardware-level interrupt
properties, such as queueing of interrupts, interrupt priorities, or non-maskable
interrupts.

e Interrupts are events locai to a processor and cannot be directly handled or
bound by processes running on a different processor.

The model used for interrupt handlers is:
e An interrupt handler is an Ada procedure with no parameters or some other
code following the same procedure-call conventions as an Ada procedure.
« Interrupt handler code can access procedure local or processor global memory.

o Interrupt handler code has access to all the Kernel primitives; the only
restriction is that a handler is not allowed to block its own execution.

e if an interrupt is enabled and a handler is bound, then the occurrence of the
interrupt transfers cantrol to the bound handler, which is code the user has
supplied.

The primitives that implement these models are discussed beiow.

20.1. Primitives

20.1.1. Enable
This primitive allows the specified interrupt to occur. No interrupt can be enabled via the
Kernel unless the Kernel has bound a handler for that interrupt. This implies that there may
be handlers bound outside the knowledge of the Kernel. This is legitimate, since the Kemnel
is only responsible for those handlers that it binds. This primitive may be invoked by any
process at any time (including the Main Unit;.

This primitive can give rise to the following status codes:

CMU/SEI-88-TR-16 (Revised) 87

¢ OK

o lllegal interrupt

¢ No interrupt handier bound
¢ Reserved interrupt

20.1.2. Disable
This primitive prohibits the specified interrupt by ignoring its occurence. This primitive may
be invoked by any process at any time.

This primitive can give rise to the following status codes:

e OK
o lllegal interrupt
¢ Reserved interrupt

20.1.3. Enabled
This primitive queries the status of the specified interrupt (i.e., whether it is enabled or
disabled). This primitive may be invoked by any process at any time.

This primitive can give rise to the following status codes:

e OK
¢ lllegal interrupt
» Reserved interrupt

20.1.4. Simulate interrupt

This primitive simulates the occurrence of a specified interrupt in software. An interrupt
handler must be bound to the specified interrupt for this primitive to have an effect. This
primitive may be invoked by any process at any time. This primitive returns only after the
interrupt handler has completed its processing.

This primitive can give rise to the following status codes:

e OK

¢ lllegal interrupt

¢ No interrupt handler bound
» Reserved interrupt

88 CMU/SEI-88-TR-16 (Revised)

20.1.5. Bind interrupt handler

This primitive associates the specified interrupt with the Ada procedure?8 identified as the
interrupt handler. This primitive may be invoked by any process at any time (including the
Main Unit). Any attempt to bind a different interrupt handler to a bound interrupt results in
the old handler being replaced. Invocation of this primitive causes the Kernel to construct
an execution environment for the handler, as shown in Figure 20-1. The environment
consists of:

¢ Kemnel encapsulation
o Interrupt handier code
 Interrupt table entry, containing:

» Handler code

» Handler status

* Interrupt status

* Interrupt vector address

This primitive can give rise to the following status codes:

* OK

¢ lllegal interrupt

« lllegal interrupt handler address

» Replacing previous interrupt handler
¢ Reserved interrupt

20.2. Blocking Primitives

None.

20.3. Status Codes

1. OK.
2. Replacing previous interrupt handler.

3. No interrupt handler bound: An interrupt cannot bé enabled for which no
handler has been defined (i.e., bound).

4. lllegal interrupt.
. Reserved interrupt.

6. lllegal interrupt handler address: The address specified for the interrupt
handler code is not a legal Ada address.

[$))

20r an equivalent procedure in another language.

CMU/SEI-88-TR-16 (Revised) ' 89

N
N

A

%\\\\\\\\\\: Binding bu“ds
Ny these structures

%\\\Q
Interrupt vector § §
address \ Interrupt Y
N ‘table \
N N
§ bound §
NP N
v enabled \
N N
N N
Kernel N 3
e n c a p s u I at i O n AR AR AR AN AN AN AN AN
Interrupt
handler
code

return

Figure 20-1: Interrupt Handler Execution Environment

90

CMU/SEI-B8-TR-16 (Revised)

21. Time Management

The concept of time permeates the entire Kernel. Many of the Kernel concepts and
primitives rely on time, specifically:

¢ Network management uses time for initial clock synchronization and for timeout
parameters in the primitives: initialize master processor and initialize
subordinate processor.

e Process management requires time for a timeout parameter, in the initialization
complete primitive.
¢ Schedule management uses time for round-robin, timeslice scheduling and for
delays via the wait primitive.
e Communication management requires time for timeout operations in receive
message and send message and wait primitives.
e Semaphore management requires time for a timeout parameter, in the claim
primitive.
e Time management requires time for a timeout parameter, in the synchronize
primitive.
e Alarm management uses time for setting alarms via the set alarm primitive.
To support these primitives, the Kernel contains facilities for time management, both for its
own use and to make available to the application code. In all cases, two forms of delay are
available to the application:

o Elapsed time: This computes the delay as elapsed time from the moment the
primitive is called. This delay is similar to a value of the Ada type duration.

e Epoch time: This delays until a specified time of resumption. This delay is
similar to a value of the Ada type time.

The rationale for the two kinds of time is that they express fundamentally different concepts.
For example, if a certain action should be performed daily at midnight, it is not correct to
perform the action "every 24 hours,” since successive midnights are not always 24 hours
apart. Similarly, if an action should be performed every 5 minutes, it is not correct to
schedule three such actions for 0155, 0200, and 0205, since 65 minutes might elapse
between the second and third (i.e., the clock might have been reset).

The application programmer must be able to choose the type of time representation needed.
Resetting the system time affects the two types of timeouts differently.

In the current design, the assumption is made that it is feasible for all the target processors
to use a common time base and to record the passage of time at the same uniform rate. It
must be recognized that there are some real-time applications for which this assumption is
unrealistic, since the processors will be distributed across several different inertial frames of
reference, but it will serve for this prototype.

it is necessary therefore to describe the local representation of time and the clock
synchronization mechanisms.

CMU/SEI-88-TR-16 (Revised) 91

Representation of Time

At any moment, on any processor, the current time is given by a combination of three
values:

1. Elapsed. The elapsed time is the number of ticks since the end of the
application initialization process.

2. Epoch. The epoch is a value representing the time-of-day—the moment at
which the processors began to computs elapsed time.

3. Base. The base is the calendar date corresponding to an epoch of zero, i.e.,
the base of the representation of time. Julian Day 1 (started at 1200 on 1
January 4713BCE) has been chosen.2®

The representation chosen for both epoch time and elapsed time is fine enough to allow
accurate measurement and large enough to allow code to run for a very long time. Thus the
current time of day = Base + Epoch + Elapsed.

Time is set initially on the Master processor in the network by the application. This is done
either by hand, during operator dialogue, or by reading a continuously running hardware
device. This time is then communicated to the subordinate processors during system
initialization. The processors may then synchronize system time by having this processor
use the synchronize primitive discussed below. This gives the application complete control
over when to synchronize system time. Once the clocks are synchronized, the Kernel does
not attempt to maintain the synchronization. The processors resynchronize only as a result
of deliberate action by application code. "

Three forms of time adjustment are supported:

1. The elapsed time for any processor can be changed by an explicit command.
This is to be used when one processor’'s time computation has gone awry. It
has the effect of changing pending timeouts of either kind, since increasing the
number of elapsed ticks makes the machine think both that it has been
running longer and that it is later in the day.

2. The epoch time of any processor may be changed. This is to be used if it is
discovered that the original time setting was wrong. It has the effect of
changing any pending epoch timeouts, since increasing the epoch makes the
machine think it is later in the day, but does not change how long it thinks it
has been running.

3. The Kernel provides a primitive that explicitly synchronizes all the clocks in the
network, as defined in Section 21.1.6.

2Thus, 1 January 1988 is JD 2447162.

92 CMU/SEI-88-TR-16 (Revised)

21.1. Primitives

21.1.1. Package calendar

The Ada package Calendar is supported. The existing vendor-supplied package is
available. The Kernel does not use package Calendar intemnally, so applications are not
required to include it in the load modules.

21.1.2. Time constants
The Kernel defines the constants:

¢ TICK: smallest resolvable interval of time.
o SLICE: smallest resolvable scheduling interval of time.

The Kernel maintains time internally accurate to the TICK. The definition of TICK is local to a
processor, and no relationship between this definition is assumed or required across the
processors in the network. However, the internal represenation of time is consistent across
processors (see requirement 12.1.25).

21.1.3. Adjust elapsed time

This primitive allows the application to increment or decrement the current local elapsed
time by a specified number of clock ticks. This primitive may be invoked by any process at
any time.

This primitive can give rise to one of the following status codes:

1. OK.
2. Change reseults in negative elapsed time

21.1.4. Adjust epoch time
This primitive allows the application to reset the epoch time of the local processor clock.
This primitive may be invoked by any process at any time.

This primitive can give rise to one of the following status codes:

1. OK.
2. Change results in negative epoch time
3. OK, but requested time already passed.

21.1.5. Read clock

This primitive reads the local processor clock and returns the current time-of-day as an
epoch time.

This primitive always succeeds.

CMU/SEI-88-TR-16 (Revised) 93

21.1.6. Synchronize

This primitive forces all local processor clocks on Kernel devices to synchronize time with
the local clock on the invoking processor. This primitive takes an optional timeout
parameter. This primitive may be invoked by any process at any time.

The post-conditions of this primitive are:

1. If it completes successfully, all clocks are synchronized.
2. If it terminates with an error, the exact state of network time is not known.

This primitive can give rise to one of the following status codes:

1. OK

2. Network failure

3. Synchronization in progress
4. Synchronization timeout

21.2. Blocking Primitives

This section lists which of the primitives described above may block the invoking process
and the conditions under which they will block:

1. Synchronize: This primitive always blocks the invoker until:

a. All Kernel clocks are synchronized,
b. An error condition is detected, or
¢. The timeout expires.

21.3. Status Codes

OK.

. Change results in negative elapsed time.
. Change results in negative epoch time.

. OK, but requested time already passed.

. Network failure: A processor in the network fails to respond appropriately to
the synchronization protocol.

. Synchronization in progress: A processor attempts to synchronize time while
a previous invocation of the synchronization primitive is in progress.

7. Synchronization timeout: The synchronization protocol does not complete
before the timeout expires.

s I NI A VR

o]

94 CMU/SEI-88-TR-16 (Revised)

22. Alarm Management

This chapter outlines the primitives for alarm management. Alarms are:

« Enforced changss in process state.
¢ Caused by the expiration of a timeout.

* Asynchronous events that are allocated on a per-process basis (each process
may have no more than one alarm).

Processes view alarms as a possible change in priority with an enforced transfer of control
to an exception handler. Alarms are requested to expire at some specified time in the future.
When an alarm expires, the Kernel raises the alarm_expired exception,3? which the
process is expected to handle as appropriate. Note that if a zero or negative duration or an
absolute time in the past is specified, the alarm expires immediately.

22.1. Primitives

22.1.1. Set alarm

This primitive defines an alarm that will interrupt the process if it expires. An optional
resumption priority may be specified. |f the alarm expires, the Kernel raises the
alarm_expired exception (when the process is running), and control passes to the
exception handler of the process. This primitive may be invoked by any process at any
time.

This primitive can give rise to the following status codes:

e OK
» lllegal context for call
* Resetting existing alarm

22.1.2. Cancel alarm

This primitive turns off an alarm that was set but has not yet expired. This primitive may be
invoked by any process at any time.

This primitive can give rise to the following status codes:

e OK
« lllegal context for call
¢ No alarm set

30 When the process's priority permits it to be scheduled.

CMU/SEI-88-TR-16 (Revised) 95

22.2. Blocking Primitives

None.

22.3. Errors

1. OK.

2. lllegal context for call.

3. Resetting existing alarm.
4. No alarm set.

96

CMU/SE!-88-TR-16 (Revised)

23. Tool Interface

The Kemel is a utility intended to support the building of distributed Ada applications. As
such, it is important the the Kernel be able to work in harmony with user-developed support
tools. To provide that support, the Kermel must provide a window into its internal workings.
it is envisioned that a tool is simply another Kernel process executing on one or more of the
processors in the network. As such, the tool has access to all the Kernel primitives. Using
these primitives along with the tool interface described below, a number of potential tools
could be built, such as:

e Process performance monitor: compiles statistics about the runtime
performance of a process(es).

¢ Processor performance monitor: Compiles processor-level statistics.
» Network performance monitor: Compiles network-level statistics.

o Message performance monitor: Compiles statistics about the frequency of
messages, average message length, peak bus usage, etc.

Given the above motivation for the tool interface, the actual form of the interface is driven by
the following concepts:

» The tool needs easy access to all the information of the Kernel. Whether or not
the tool can make use of the information is not the Kernel's concern. The key is
that the Kemel must provide visibility into everything it knows intrinsically,
without expending resources to combine that intrinsic knowledge in any way.

+ The extraction of information based on what the Kernel knows is left to the tool
(and indeed, it is deemed to be the function of a tool). It is in the domain of the
tool where the intrinsic Kernel information is combined and presented in some
context-specific manner.

¢ The internal Kernel information must be provided in a manner that does not
compromise the integrity of the Kernel; this implies a read-only access to the
Kernel's internal data structures.

e The performance impact of using the tool interface must be predictabla,
Obviously, the performance impact will not be entirely predictable given the
non-determinism inherent in the activities being monitored. But the tool
interface bounds the impact in a way that gives insight into the potential
performance impact of a tool (of course, the tool is a process that can be
monitored like any other process in the system, so its performance may be

" determined empirically). The tool should consume predictable resources
generally (not just clock cycles), e.g., storage, message bandwidth.

¢ An application should never have to be modified simply to use a tool (while this
may not always be possible, it is nevertheless a desirable goal). Therefore,
while some of the information made available via this interface couid be
acquired by having the tool communicate directly with an application process,
this approach is rejected as bad tool design and a distinct detriment to the
application software of an embedded system. (Note that the Main Unit is used
to establish the process topology and is not considered application code.)

In general there are two classes of Kermel information that may be of interest to a tool:

CMU/SEI-88-TR-16 (Revised) : 97

process information and interrupt information. The primitives defined below describe the
information available and the mechanisms provided to access this information.

23.1. Primitives

23.1.1. Process information

The Kemel knows about all processes in the system; therefore, the tool interface provides
the following information about processes to the user:

¢ Process attributes, including:

» Process identifier

» State (see Figure 18-1)

» Time (the time when the above state was entered)
* Priority

» Preemption status

 Alarm status

+ Primitive return status code

e Message attributes, including:

» Sender’s process identifier

* Receiver’s process identifier

+ Time the message was sent or received
» Message length

» Message tag

» Message contents

e Process table, which includes the following information for every declared
process:
* Local process identifier
» Remote process identifier
* Process name
» Device name
* Local address
- State (see Figura 18-1)
* Priority
» Preemption status

98 CMU/SEI-88-TR-16 (Revised)

23.1.2. Interrupt information

In a manner analogous to process information, the Kernel knows all there is to know about
the interrupts in the system. Therefore, the tool interface provides the following interrupt
information to the user:

Interrupt table, which includes the following information for every interrupt:

e Interrupt name

« interrupt state (enabled or disabled)

» Handler state (bound, unbound, unknown)
¢ Handler code address

+ Handler stack address

23.1.3. Begin collection
This primitive informs the Kernel of:

* What process attribute to collect and for which process to collect it, or
 What message attribute to collect and for which process to collect it.
The Kernel logs the data asynchronously as the state of the process changes:

¢ Received message bodies are logged as new messages arrive for the process.
» Sent message bodies are logged as the process sends messages.

* Process statistics are logged when the process changes one of its own
attributes or when the scheduler changes its process state.

» Message attributes (no bodies) are logged as new messages arrive and leave.

The Kernel logs data by sending a message to the process that requested the collection
operation; this process is presumably a part of the tool.

Nonexistent, aborted, or terminated processes for which information is requested are
ignored.

This primitive always succeeds.

23.1.4. Cease collection
This primitive disables the collection of the indicated attribute on the indicated process.

This primitive always succeeds.

23.1.5. Read process table
This primitive reads the Kernel's process table.

This primitive always succeeds.

CMU/SEI-88-TR-16 (Revised) 99

23.1.6. Read interrupt table
This primitive reads the Kernel's interrupt table.

This primitive always succeeds.

23.1.7. Size of process table

This primitive determines the size of the Kernel's process table.

This primitive always succeeds.

23.2. Blocking Primitives

None.

23.3. Status Codes

None.

100

CMU/SEI-88-TR-16 (Revised)

Appendix A: Glossary

Absolute (time):
Ada:

Alarm:

A synonym for epoch time.

ANSI/MIL-STD-1815A. Related information can be found in Section
4.1.

A single timer associated with a process that may expire during process
execution. If it does expire, a change of process state occurs, and the
exception alarm_expired is raised. Related information can be found in
Chapter 13 and Chapter 22.

Asynchronous (event):

An event that occurs while the affected process is performing other work
or is waiting for the event.

Blocked (process state):

A process that is (temporarily) unable to run. All process states are
described in Chapter 18.

Blocking (primitive):

Cyclic (process):

DARK:

A Kemel primitive that causes the process state to become blocked.
The "blocked” process state is described in Chapter 18. Each chapter
in Part 3 has a paragraph discussing blocking primitives.

A Kemel process with all the following characteristics: it executes
repeatedly; it executes within a user-defined time limit; if it overruns its
execution time limit (i.e., its "frame”), then the exception alarm_expired
is raised.

Acronym for the SEI Distributed Ada Real-Time Kernel Project.

Dead (process state):

Device:
Distributed:

Duration:

Elaboration:

Elapsed (time):
Epoch (time):
Event:

Exception:

A process that is unable to run again. All process states are described
in Chapter 18.

A hardware entity that can interrupt a processor or that can
communicate over the system bus.

Executing on more than one processor in support of a single
application.

The Ada type duration; used to measure elapsed time. Related
information can be found in Chapter 21 and the Ada Language
Reference Manual.

The process by which declarations achieve their effect (such as creating
an object); this process occurs during program execution. This
definition is from the Ada Language Reference Manual.

The number of TICKs since the end of the application initialization
process. Related information can be found in Chapter 21.

The value representing the moment at which the processors began to
compute elapsed time. Related information can be found in Chapter 21.

Something that happens to a process (e.g., the armrival of a message,
the arrival of an acknowledgment, being killed by another process).

An error situation which may arise during program execution. This
definition is from the Ada Language Reference Manual.

CMU/SEI-88-TR-16 (Revised) 101

-

FIFO:

Interrupt:
Interrupt handler:
Kernel:

Locali:
NCT:
Network:

Package:

Package body:

First in, first out.

Suspension of a process caused by an event external to that process,
and performed in such a way that the process can be resumed. (This
external event is also called an interrupt.)

Code automatically invoked in response to the occurrence of an
interrupt.

Basic system software to provide facilities for a specific class of
applications.

A process executing on the node invoking the primitive.
Network Configuration Table.

Series of points (nodes, devices, processors) interconnected by
communication channels.

A group of logically related entities, such as types, objects of those
types, and subprograms with parameters of those types. It is written as
a package declaration and a package body. A package declaration is
just a package specification followed by a semi-colon. A package is one
kind of program unit. This definition is from the Ada Language
Reference Manual.

Contains implementations of subprograms (and possibly tasks as other
packages that have been specified in the package declaration). This
definition is from the Ada Language Reference Manual.

Package Calendar:

The Ada package Calendar. Related information can be found in the
Ada Language Reference Manual.

Package specification:

Postcondition:
Pragma:
Precondition:

Primitive:
Process (Kernel):

Process stack:

Has a visible part, containing the declarations of all entities that can be

explicitly used outside the package. It may also have a private part
containing structural details that complete the specification of the visible
entities, but that are irrelevant to the user of the package. This
definition is from the Ada Language Reference Manual.

An assertion that must be true after the execution of a statement or
program component.

Conveys information to the Ada compiler. This definition is from the
Ada Language Reference Manual.

An assertion that must be true before the execution of a statement or
program component.

Basic Kernel action or datum.

An object of concurrent execution managed by the Kernel outside the
knowledge and control of the Ada runtime environment; a schedulable
unit of parallel execution. Related information can be found in Chapter
2.

Built by the Kermnel when creating a Kernel process. The process stack
contains a stack plug (to prevent the propagation of unhandied
exceptions), a dummy call frame (pointing to process termination code),
and a place for process-local variables.

102

CMU/SEI-88-TR-16 (Revised)

Processor: Central processing unit (CPU).

Real-time: "When it is done is as important as what is done.”
Remote: A process not executing on the node invoking the primitive.
Runtime: The period of time during which a program is executing.

Running (process state):
A process that is executing on its processor. All process states are
described in Chapter 18.

Semaphore: A mechanism for controlling process synchronization, often used to
implement a solution to the mutual exclusion problem. Related
information can be found in Chapters 8 and 17.

Status code: Generic term used to indicate the status of the execution of a Kernel
primitive. A status code may correspond to an output parameter of
some discrete type or to an exception. Related information can be
found in Chapter 4.5. In addition, each chapter in Part 3 has a
paragraph discussing status codes for each primitive.

Suspended (process state):
A process that is able to run but cannot because a process of higher or
equal priority is running. All process states are described in Chapter 18.

Synchronous (event):
An event that happens while a process is looking for that event.

System bus: Communication medium connecting processors and devices into a
network.
Task: An Ada language construct that represents an object of concurrent

execution managed by the Ada runtime environment supplied as part of
a compiler. Related information can be found in Chapter 2 and the Ada
Language Reference Manual.

TICK: The smallest resolvable interval of time. The Kernel references time in
units of TICK. Related information can be found in Chapter 21.
Time: The Ada type time; used to measure epoch time. Related information

can be found in Chapter 21 and the Ada Language Reference Manual.

CMU/SEI-88-TR-16 (Revised) 103

104

CMU/SEI-88-TR-16 (Revised)

Appendix B: Mapping from Kernel Primitives to
Requirements

Deleted - 12 April 1989. This information is now contained in the Ada package

specifications.

CMU/SEI-88-TR-16 (Revised)

105

106

CMU/SEI-88-TR-16 (Revised)

Appendix C: Mapping from Requirements to Kernel
Primitives

Deleted - 12 April 1989. This Information is now contained In the Ada package
specifications.

CMU/SEI-88-TR-16 (Revised) ' 107

108 CMU/SEI-88-TR-16 (Revised)

Appendix D: Requirement Results

This appendix presents the results of the performance testing for the 68020 version of the
Kemel. These results come from measurements completed on 1 September 1989. Please
note the following:

1. All values are in microseconds unless otherwise indicated.

2. All known time deductions have been applied to the measured value column;
the time deduction for get_current_countis 11.18 pus.

3. Times for tests 10.2.1 through 10.2.4 were obtained by taking one-half of the
round trip times for the corresponding messages.

4. The time for creating a process includes declaring the process as well.
5. A large message is 1024 bytes; a 0-length message is 1 byte.

One final word, all of these values reflect a Kemnel to which no optimizations (either via the
compiler or via Kemnel code restructuring) have been applied.

Requirement Results
Requirement Required Measured
Number value value
5.2.1 5% ?
522 . 15% ?
5.2.3 | 100 bytes ?
5.24 linear See KAM & KUM
5.2.5 KAM See KAM
6.2.1 5.0 secs 516002.82
6.2.2 8D #
7.2.1 60 | 1184.02
7.2.2 30 251.78
7.2.3 deleted #
7.2.4 20 36.82
7.25 100 bytes ?
7.2.6 64 bytes ?
8.2.1 25 ?
8.2.2 25 47.58
8.2.3 25 57.84

CMU/SEI-88-TR-16 (Revised) 109

Requirement Results

Requirement Required Measured
Number value value
9.2.1 57 164.88
9.2.2 18 79.54
9.2.3 43 .

9.2.4 33 .

9.25 18 245.04
9.2.6 76 111.74
9.2.7 33 .

10.2.1 25 2502.791
10.2.2 25 43533.20t
10.2.3 50 3892.74t
10.2.4 50 43405.861
10.2.5 15 187.16
10.2.6 15 198.34
10.2.7 20 359.06
10.2.8 20 343.20
10.2.9 25 431.78
10.2.10 25 1549.32
10.2.11 128 bits ?

11.21 15 35.78
11.2.2 10 1212
11.23 20 38.82
11.2.4 16 bytes ?

12.2.1 18 301.96
12.2.2 18 484.68
12.2.3 18 45.18
12.2.4 200 ?

1225 TBD *

13.2.1 10 237.90
13.2.2 10 101.66
13.2.3 TBD 1486.58

110

CMU/SEI-86-TR-16 (Revised)

I

e

Requirement Results
Requirement Required Measured
Number value value
14.2.1 10 ?
14.2.2 5 ?
14.2.3 5 300
14.2.4 Predictable See KUM
14.2.5 Consistent time | See KUM
14.2.6 Consistent data | See KUM —J

TABLE KEY:
? - no measurements taken
- test deleted
* - test requires a logic analyzer to complete
t - no deductions for transmission time applied, test requires
a logic analyzer to complete

CMU/SEI-88-TR-16 (Revised) A RA

112 CMU/SEI-88-TR-16 (Revised)

References

[ALRM 83] American National Standards Institute, Inc.
Reference Manual for the Ada Programming Language.
Technical Report ANSI/MIL-STD 1815A-1983, ANSI, New York, NY,
1983.

[artewg-interface 86]
Ada Runtime Environment Working Group.
A Catalog of Interface Features and Options for the Ada Runtime
Environment.
Technical Report Release 1.1, SIGAda, November, 1986.

[artewg-model 86] Ada Runtime Environment Working Group.
A Canonical Model and Taxonomy of Ada Runtime Environments.
Technical Report, SIGAda, November, 1986.

[artewg-survey 86] Ada Runtime Environment Working Group.
First Annual Survey of Mission Critical Application Requirements.
Technical Report Release 1.0, SIGAda, November, 1986.

[Firth 87] Firth, R.
A Pragmatic Approach to Ada Insertion.
In Proceedings of the International Workshop on Real-Time Ada Issues,
pages 24-26. May, 1987.

[KAM 89] Bamberger, J., T. Coddington, C. Colket, R. Firth, D. Klein,
D. Stinchcomb, R. Van Scoy.
Kernel Architecture Manual.
Technical Report CMU/SEI-89-TR-19, ESD-TR-89-27, Software
Engineering Institute, December, 1989.

[KFD 89] Bamberger, J., C. Colket, R. Firth, D. Klein, R. Van Scoy.
Kernel Facilities Definition.
Technical Report CMU/SEI-88-TR-16, ESD-TR-88-17, ADA198933,
Software Engineering Institute, December, 1989.

[Tanenbaum 81] Tanenbaum, A.S.
Network Protocols.
Computing Surveys 13:453-489, 1981.

[Workshop 88] Ada UK and SIGAda.
Second International Workshop on Real-Time Ada Issues, Devon, UK,
ACM Press, 1988.

[Zimmermann 80] Zimmermann, H.
OSI Reference Model - The ISO Model of Architecture for Open Systems
Interconnection.
IEEE Transactions on Communications COM-28:425-432, 1980.

CMU/SEI-88-TR-16 (Revised) 13

114 CMU/SEI-88-TR-16 (Revised)

SECURITY CLASSIFICATION OF THIS PAGE

r REPORT DOCUMENTATION PAGE

1b. RESTRICTIVE MARKINGS

1s. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED NONE
20. SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION/AVAILABILITY OF REPORT
I N/A APPROVED FOR PUBLIC RELEASE
25, DECLASSIFICATION/DOWNGRADING SCHEDULE DISTRIBUTION UNLIMITED
N/A

4 PERFCRMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-88-TR-16 ESD-88-TR-17

6a. NAME OF PERFORMING ORGANIZATION rb. OFFICE SYM8OL 7a. NAME OF MONITORING ORGANIZATION

{1l applicable}
SOFTWARE ENGINEERING INST. SEI SEI JOINT PROGRAM OFFICE

7b. ADORESS (City, State and ZIP Code}

6c. ADDRESS (City, State and ZIP Code)

CARNEGIE-MELLON UNIVERSITY ESD/XRS1
PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE
: HANSCOM, MA 017131
8a. NAME OF FUNDOING/SPONSORING 8b. OFFICE SYMB8O0L 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION ({f applicable)
SEI JOINT PROGRAM OFFICE ESD/XRS1 F1962885C0003
8c. ADDRESS (City, State and ZIP Code)) 10. SOURCE OF FUNDING NOS.
CARNEGIE-MELLON UNIVERSITY PROGRAM PROJECT TASK WORK UNIT
PITTSBURGH, PA 15213 ELEMENT NO. NO. NO. NO.
11. TITLE (Include Security Classification) 63752F N/A N/A N/A
LgiKERNEL FACILITIES DEFINITION Kernel Version}3.0

12. PERSONAL AUTHORAI(S)
Judy Bamberger, Currie Colket, Robert Firth, Daniel Klein, Roger Van Sco

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr.. Mo., Day) 1S8. PAGE COUNT
FINAL FROM TO December 1989 114

16. SUPPLEMENTARY NQTATION

Please note: This document replaces CMU/SEI-88-TR-16, ESD-88-TR-17, "Kernel Facilities
Definition" DATED JULY 1988.

17. COSATI COOES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB. GR. Ada Kernel
distributed real-time
DARK operating systems

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
This document defines the conceptual design of the Kernel by specifying:
the underlying models, assumptions, and restrictions that govern the design
and implementation of the Kernel; and the behavioral and performance re-
quirements to which the Kernel is built. This document is the requirements
and top-level design document for the Kernel.

-

Foo OISTRISUTION/AVAIABILITY OF AGSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED/UNLIMITED &1 same as ret. (O oTic usenrs O3 UNCLASSIFIED, UNLIMITED DISTRIBUTION
222. NAME OF RESPONSIBLE INDIVIOUAL 22b. TELEPHONE NUMBER 22¢. OFFICE SYMBOL

KARL H. SHINGLER (Include Area Code)
i 412 268-7630 SEI JPO
DD FORM 1473, 83 APR €OITION OF 1 JAN 73 1S OBSOLETE.

SECURITY CLASSIFICATION OF THIS PAGE

